Tuesday, September 27, 2011

The European Ecology Federation Congress, day 2

Day two of the conference, and still many great talks. I mainly stayed in the session on synthesizing community ecology, phylogenetics and macroecology. This has turned out to be a great conference and Avila is a great venue.


Carsten Rahbek. His talk is on merging the fields of macroecology to better understand patterns of diversity. Different models explain variation differentially at different scales. For example, climate models do well for wide-ranging species but not for scarce species. A model of evolution may do much better for scarce species, but not for wide-ranged species. Statistical tests confirm a correlation, but not necessarily a mechanism. One could get different conclusions if one were to compare to a null model. He advocates a spatially explicit species assembly model that integrates macroecological models with community assembly. It is scale invariant and can explain spatial and temporal variation in assemblages. In an example, he shows that, based on small scale sampling, species distribution models will over-predict richness. Need to combine macroecological models with distribution models, because acroecological models do well to predict richness but not composition while distribution models predict composition but not diversity.


Jens-Christian Svenning. He talked about paleoclimatic influences on ecological patterns and function across scales. Past climates have shown masive changes and different groups of species have evolved during these events, while other species have gone extinct. The velocity of climate change was highest in northern Europe and North temperate North America, and higher velocity results in lower endemism since it is quicker for species to migrate than diversify. Higher velocity results in lower specialization in hummingbirds. He finishes with a note about current regions undergoing fast climate change; these are not necessarily those same regions that had the most change in the past.


Adreas Prinzing. His talk was about how niche conservatism can inform our potential solutions for changing environments. Specialists are declining in changing environments and how does this apply to specialist clades of closely related species? Specialist species tend to occur in specialist genera. However, niche conservatism does not tell us everytng about species differences/similarities because closely related species clearly coexist and exhibit substantial trait differences. Species coexist within niches by key divergences.


Kenneth Kozak. He presented a way that phylogeny illuminates the origin of climate-richness relationships. Only speciation, extinction or dispersal can change richness, and many models do not ask how these processes change. He examined salamader diversity and evolutionary history using 16000 occurrence records in North America, and examined climate variables for occurrences. Diversity was highly associated with cool, moist places. Richness is strongly correlated with evolutionary time of colonization of climatic conditions. For example, evolution of warm species is recent, hence fewer species. Diversity does seem to be saturating, and so time is limiting factor, and more species can probably still emerge.


David Vietes. He gave an interesting talk on the amphibians of Madagascar, which is a diversity hotspot for amphibians. There were 132 described species n 1999 and now 263 with about 200 still needing to be described. Many are endemic to small regions of Madagascar (the whole family is endemic to Madagascar). He discussed many aspects of the distribution of these species, and looked at phylogenetic patterns. Some interesting observations include: older species pairs are further separated in space and smaller species have smaller ranges. Also, there appears to be a predictable pattern of richness hotspots, but endemism hotspots are more idiosyncratic.


Joaquin Hortal. He discussed the effect of glaciation on richness, functional diversity and phylogenetic diversity for European mammals. The hypothesis he explored was that current distributional patterns driven more by past changes since glaciation than current climate. He compare several different types of measures and it turns out that current climate is more important for explaining patterns of co-occurrence and relatedness, with more closely related species occurring together at northern locales.


Catherine Graham. She also explored patterns of richness, functional and phylogenetic diversity, but was looking at hummingbirds diversity patterns across elevation gradients in South America. She compiled an impressive dataset with several morphological traits and co-occurrence patterns. Broadly, close relatives co-occur at high elevations and more distantly at lower where competition is stronger. In local communities a mix of environmental filtering and competitive dispersion seem to be operating. At high elevations, both functional and phylogenetic diversity are high.


Rob Dunn. He gave a fantastic talk on the species on the human body and in our lives and homes. He told us about projects that involve citizen scientists from across the USA and had them sample their homes and bellybuttons. Amazingly, Dunn’s group has so far identified 1400 species in belly buttons, and many of them are unknown species –which could not be classified into known species groups. He looked at many factors like ethnicity, geography, cleanliness, but none of these explained this diversity well. A subset of these species are bellybutton specialists and dominate bellybutton floras within and among people, and are phylogenetically clustered, evidence that the bellybutton habitat is a conserved trait.


Cecil Albert. I ran to another session to see this talk on intraspecific variation in species traits. She eloquently showed that for plant assemblages, there was substantial intraspecific variation in traits. Some species showed high variation and some showed almost no variation. Importantly, she showed that this variation could substantially change our ability to explain how functional traits link to abundance and coexistence. She simulated different levels of variation and looked at the strength of the correlation between expectations from mean trait versus the actual trait that varies. The strength quickly declines for some traits as variation increases, meaning that with variable traits, the explanatory ability of using a mean trait is weak.


Sally Keith (Flash talk*). She examined the Mid-domain effect (where, because of range sizes, maximal diversity is found in the centre of a geographic landmass by random chance), and process based models to test mechanism for middomain prediction. She showed that these models seem to have limited success. Perhaps environmental gradients and species interactions could be important. But when she added interactions to the model, it then predicts humped shaped pattern predicted by the mid-domain effect.


Tamara Munkemuller (Flash talk). She examined phylogenetic relationships as a way to examine niche patterns and coexistence. She hypothesized that there should be strong filtering under stressful conditions. She examined thousands of plots across elevational gradients, and plots that were in stressful locations tended to be phylogenetically clustered, meaning certain groups of species exist there.


Susanne Fritz (Flash talk). She was looking at diversification patterns in birds. Using lineage through time plots one should expect that the rate of diversification should decline trough time, which perhaps equates to niche filling. For species in tropical Asia, she found that there is not much leveling off of diversification rate. Though interestingly, groups that have not dispersed (for example, birds of paradise) do show a plateau in diversification. Globally, diversification slows down more in more speciose regions.


Jake Alexander (Flash talk). He had a very interesting talk on elevation gradients in richness in non-native plants invading mountain habitats. Most species have narrow elevational ranges in lower and mid elevations and high ranges for those species found at high elevations. The explanation is that these non-natives are generalist and that they originate form lower elevations –where human activity dominates, and must spread up the mountain to get to the high elevations.


*Flash talks are 3 minutes long, and a great way for people to communicate new and exciting results.

Monday, September 26, 2011

The European Ecology Federation Congress, day 1

I’m in the beautiful walled city of Avila, Spain for the European Ecology Congress. It is at a lovely venue and with about 800-1000 attendees, seems like just the right size. It is a young meeting, with relatively few old-timers like me, but there is an excitement, and the talks have been excellent. Each session starts with a keynote, where the person gets 25 minutes, followed by a bunch of 15 minute talks. The most interesting aspects of the sessions I went to was that they usually include several 3-minute ‘flash’ talks, which surprisingly works. I spent the day going to talks in two sessions, plus a plenary talk by Jordi Bascompte, and here are the talks I saw*:


*sorry about the abrupt, choppy nature of some of the entries, there were a lot of talks, and they go until after 7pm.


I spent the morning in a session on biodiversity and ecosystem function under environmental change. Most of these talks we by people associated with the BACCARA project on forest biodiversity.


1) Xavier Morin, Montpellier, talked about climate change and tree diversity and productivity. Looked at SR (see glossary at end for acronyms) and FD on biomass produced. Do grassland BEF studies predict frost ones, with no opportunity for random assembly? Use forest dynamics model where species are defined by rigorous parameterization –one can examine long-term dynamics and many species combinations. Simulated 30 species monocultures and many combinations from 2-30. Strong relationship between realized richness and productivity, but a lot of variation. 93% of 30 species plots show transgressive over-yielding after 2000 years. FD predicts increase in productivity. Assess future climates from three climate change scenarios, always steeper slope with future climate, meaning diversity is more important in the future. This was a great talk.


Sibylle Stoeckli. Affects of diversity on individual tree performance. She wanted to assess the influences of tree traits (e.g., size) on the performance of neighbours. Plots planted with four species combinations, with a pool of 16 species, and treatment is different FD levels (based on 9 traits). No effect of plot diversity on tree performance. Tree height has effects on neighbours depending on whether focal tree is shade tolerant or intolerant. Diversity not important as traits of species such as growth rate. Interspecific competition lower than intraspecific.


Aitor Ameztegui. Montane-apine ecotone is diverse and are traits important for coexistence. Are interspecific differences key for coexistence, and can these tell us about biome changes. One species has advantage at low light but quickly saturated with increasing light. Silver fir had constant survivorship, while other species increased survivorship with increasing light. Fir has low plasticity, whereas Scots pine is more plasticity and should adapt to climate change.


Alfredo saldena. FD on decomposition in South American rainforest (Chile). He looked at two forest types within the Andes. In both forests strong positive relationship between FD and litter decomposition. FD is based on leaf traits.


Julia Koricheva. Forest diversity and insect communities. Boreal species (5) in southern Finland in monocultures and 2, 3 and 5 species mixtures. Looked at different types of leaf damage. For birch, increasing skelontonizing damage with diversity. During aphid outbreak, decline in density with increasing SR. They prefer birch. Leaf miner richness on birch increased with SR. In another, german, experiment (the experiment in Stoeckli's talk) where FD was manipulated. Again several types of herbivores had positive relationships with FD, again counter to expectations of more specialized herbivores declining with tree diversity.


Laura Concostrina-Zubiri. Biological soil crusts (BSC) are important for soil fertility and stability in dry ecosystems. creates soil heterogeneity. Examined the role of BSC across a grazing gradient. Measured 17 soil variables for a bunch of species. Species differ in their different soil fertilities. Less heterogeneity with higher grazing. Grazing also reduces individual species contributions to soil fertility.


Plenary talk: Jordi Bascompte. Plant-animal mutualistic networks. He talked about Global datasets to answer three questions: 1) are there regularities in network architecture; 2) Do these provide robustness to extinction; and 3) what are the contribution of species to network architecture and robustness? Networks seem to be nested such that specialist animals use most utilized plants. This means there should be a link between structure and robustness (losing an aminal should not result in plant extinction). Half of communities have interactions dictated by evolutionary history. Thus when there is extinction, it tends to be related species, nonrandom. Therefore clades are more likely to be lost. How much of the interactions that are shared can be used as a competition term in coexistence model. The higher the nestedness the lower the competition and the higher maximum diversity. Some species contribute to nestedness much more than others and therefore are much more responsible for stability and have greater probability to go extinct.


I spoke in a session on evolutionary history, ecosystem function and conservation, and (probably ignoring my talk) these were excellent.


Marten Winter. He asked whether phylogenetic studies purporting to do conservation actually did conservation and whether using PD was feasible. Assumptions, some not proven. Unsderstandability of terms like evolutionary potential, what that means for species and communities can cause confusion. Different measures can produce different patterns and he asked Don't we already conserve what we want? Or is there an added advantage to accounting for PD. There were a surprising number of papers that do make conservation recommendations.


Nicolas Mouquet. Phylogenetic constraints on BEF. Biodiversity crisis is a change for synthesis for diffect fields to come together. Positive relationships went from how much to what kind diversity. Evolution is necessary for understanding how biodiversity shapes ecosystem function. He tested these relationships with bacteria from Mediterranean and evolved in lab. There are ancestral and derived groups. Strong positive BEF relationships for both ancestral and derived taxa. For ancestors, a strong PD influence was observed. But not for derived taxa, a reshuffling of traits in the lab. Need to understand the history.


Ana Rodrigues. Species are not all the same such as mouse versus echidna. Need to be cognizant of tree structure and species distributions. Does it matter if we use PD for complimentary reserve design and compare maximizing PD vs SR vs random. SR conserved then look at PD. Little difference for mammals at global level, meaning that current reserve selection routines seem sufficient. Important for species level, but perhaps species level activities may have done a good job at conserving PD.


Sandrine Pavoine. Rockfish declines and phylogeny. Phylogenetic diversity based on period between speciation events. Sum abundances for lineages for each period. Sum period lengths times relative abundance. Calculate lineage contribution to total diversity. Which period is reponsible for abundance change. One period explained declines in rockfish and is actually quite an old period (6 million years).


Wilfried Thuiller. Preserving the tree of life and climate change. Are there winners and losers? Estimate phylogenetic consequences of climate change, if there are sensitive clusters, would one expect more loss than expected by chance. There is a phylogenetic signal in climate, kind of weak, but extremely close relatives respond similarly. Loss of PD is not much different than random. Sensitive species tend to be young. But there is a predicted loss of phylobetadiversity for all birds, mammals and plants with climate change.


Vincent Devictor. Comparing several components of biodiversity. Can SR, FD, PD serve as surrogates. Compared metrics using birds surveys in France with 22 traits. Abundance weighted measures. FD declining while SR increasing. Differential responses important for making conservation decisions.


Laure Turcoti (Flash talk 1). Comparison of SR FD PD on plant communities. SR increases with urbanization and FD and PD decrease with urbanization.


Laure Zupan (Flash talk 2). Current distribution of phylogenetic diversity. Covariation across different clades. Birds, amphibians and mammals. Mismatch between tax am amphibians high PD relative to SR, while mammals low.


Jonathan Davies. Plant extinction risk in the Cape using IUCN rankings. Genera level phylogeny for the over 700 genera in the Cape. Clustering of extinction risk on phylogeny, but plant extinction is correlated with clade size, meaning that large clades have more risk –opposite of what has been observed for mammals. The reason is that many small peripheral species with small range.


Sebastian lavergne. Dechronization of niches, i.e., travel back in time. Is there signal of niche conservatism, and for different niches for the birds for Europe. Climatic, habitat and trophic niches. Trophic niche evolves at slower rate but niches evolve in punctual way, not gradual. High clade disparity in niches since niches evolving faster.


Glossary

BEF: Biodiversity and ecosystem function

FD: Functional diversity

PD: Phylogenetic diversity

SR: Species richness

Friday, September 23, 2011

NSF funds Project Baseline

NSF approved 1.2 million dollars for a unique and visionary idea: collect 12 million seeds and store them in seed banks for years to come. And while storing seeds for the future doesn't sounds so different from what other groups have already done, where Project Baseline differs is that this seed bank is not only a conservation measure--preserving natural genetic variation from plant populations for the future--but also an opportunity to track the effects of changing climate on the direction and rate of evolution in these species.

This idea was first explored in "The Resurrection Initiative: Storing Ancestral Genotypes to Capture Evolution in Action" (Franks et al 2007). By collecting and storing seeds from both within and across populations throughout the range of a species, ancestral and descendent populations can be compared in the not too distant future. The role of adaptive evolution and range shifts can be explored through this lens. Project Baseline is a great example of how much we can learn from long-term, collaborative experiments and projects (other examples include NutNet , NCEAS), and how valuable funding such projects should be considered.

Friday, September 16, 2011

Ecology needs more evolution (and vice versa)

One historical weakness in community ecology is its singular focus on ecology in the absence of any consideration of the role of evolution. Ecological theory may attempt to explain and expand on mechanisms of coexistence, but this is done in ignorance of whether such a mechanism could have reasonably evolved in the first place. Evolutionary biology has equally ignored the role of ecology (for example, just-so stories invented in the absence of ecological support). Fortunately, it is becoming more common to see papers that incorporate, empirically or theoretically, evolution and community ecology.

A recent paper by Robin Snyder and Peter Adler attempts to incorporate both ecology and evolution in reference to the storage effect, a mechanism in which species coexist as a result of environmental variability and corresponding differential variation in species fecundity in response to the environment. As a simplistic example, consider a system of two annual plants for which each species has their highest recruitment at different temperatures, and temperature varies randomly between years. Each species is expected to have high recruitment in different years/environmental conditions, and this high recruitment in good years can then buffer that species’ fitnesses in years of poor conditions, provided the species have some way of “storing” fitness (such as long-lived seedbanks). The storage effect therefore predicts that environmental variability can mediate the coexistence of otherwise unequal competitors. Because the requirements of the storage effect appear so ubiquitous (environmental variation, differential species responses to the environment, some sort of buffer), it seems that the storage effect could be very common. However, there is also theory suggesting that variation in demographic rates should come at a fitness cost, since the long term mean growth rate will be lower if demographic rates vary than if they are fixed (as the result of geometric averaging). This predicts that there should be selection against flexible—rather than fixed—demographic rates, including rates that vary in response to environmental or other cues. Is it possible then for variable demographic rates, which are necessary for the storage effect, to evolve?

Snyder and Adler discuss this disconnect between community ecology and evolution, questioning whether the storage effect can be supported by both evolutionary and ecological theory. To this end, the authors explore whether, and under what conditions, the storage effect could evolve. Snyder and Adler use a simple model of competition between two annual plants, in which fecundity fluctuates due to environmental variation, and germination rate can be temporally fixed, or variable. Germination rates should be constant, despite environmental variation, due to the cost of variability. Germination rates would be expected to vary year to year only if this conferred a fitness benefit to the species. Hypothesized benefits of variable germination rates include if germination rates are positively correlated with fecundity (that is, in good years germination is higher as well), or if it allows a species to avoid competition (by having high germination when their competitor has low germination). To test this hypothesis, the authors varied the correlation between fecundity and germination, and the correlation between the two species’ germination rates. They then examined the conditions under which variable germination rates were an evolutionarily stable strategy (ESS).

Snyder and Adler’s results suggest that the storage effect is expected to evolve only under anarrow set of conditions. A variable germination rate was most likely to evolve if there was a strong correlation between fecundity and germination rate. They note that such a correlation might occur if seed production and germination depended on similar environmental cues or similar resource requirements. A variable germination rate was also a stable strategy if one species was limited in its ability to evolve, in which case the other species evolved variable germination rates. If these specific conditions didn’t hold, the storage effect was not evolutionarily stable.

These results are meaningful because they highlight how different the conclusions of community ecology, which has proposed that the storage effect could be a widespread contributor to coexistence, and evolutionary theory, which suggests that the storage effect may only occur under particular conditions, can be. This kind of reconciliation of community ecology and evolution tells us more about natural systems than either approach can on its own. It also hints that theory and conclusions we’ve drawn in community ecology in the absence of evolution may be limited and incomplete.

Wednesday, September 14, 2011

BES day 2: Plants, plants and way more plants

From Sept 13


I attended the Journal of Ecology Centenary symposium all morning, where the talks were broad overviews of select areas in plant ecology. They were quite good; I really do feel that I was informed about recent research advances.


In the first talk of the morning, Sandra Lavorel gave a tour de force about how plant functional traits scale up to ecosystem services. She recognizes that there are trade offs in services, where one service (say agricultural value) is in direct conflict with a noter service (say species richness). She very cleverly asks whether these services are constrained by ecological trade offs or traits. It is known that functional traits affect ecosystem functions and services, and it is also known that there are strong tradeoffs in plant traits such as explained by the world wide leaf economic spectrum. Where plants have these tradeoffs they affect productivity and litter decomposition. Height for example affects productivity and other trophic levels supported. Abiotic gradients affect traits like height or leaf N, and these traits affect ecosystem function such as biomass or litter. Multiple service such as agronomic value, pollination, cultural value, richness, etc. To understand how traits relate to tradeoffs in services.


Next was Angela Moles who talked about how the study of invasions has progressed and whether there were important future directions. The have been 10,000 studies on invasions over the last 30 years and she recognizes that the fact that species evolve in their new ranges to be a critical future research need. Specifically, she asked: do exotics evolve to be more similar or different tha natives? And, can differences be predicted by environmental differences between home and away range. Most interestingly she brought up the point that if on-going change produce new species, should they then be conserved as natives? She went on to say that broad generalizations about trait differences between natives and exotics have produced largely idiosyncratic results, and so other priorities such take the forefront. She went on to say that impact on natives is actually an understudied problem, which needs to be rectified. Finally, she showed us that there is a generally positive relationship between disturbance and invasion. But invasions are favored when there is a change in disturbance rate, since natives are likely adapted to historical disturbance regime. She showed some relatively weak evidence that change in disturbance better predictor of invader richness and abundance then the amount of disturbance, but more work is needed.


Yadvinder Malhi talked about how productivity and metabolism were related to biomass in tropical forests. He sowed us that a small proportion of primary production is turned into biomass. Thus small changes in various pathways could have large consequences. In exhaustive studies in the tropics, he showed that increases in GPP (gross primary production) occurred with soils nutrient quality, and decreases with elevation, likely because of temperature effects on photosynthesis. He also showed that carbon use efficiency is lower than thought, about 30% of carbon turned to biomass. Further, higher productivity is associated with lower residence times, and he hypothesized that rapid growth leads to earlier senescence or less defences if trade offs exist. Biomass appears to be increasing with climate change, but potentially greater mortality and turnover.


Then James Bullock talked about where we are at with understanding seed dispersal. There has been a long history of not understanding long distance dispersal, LDD. The main empirical approaches have grown rapidly lately: tracking seeds, molecular methods and marking seeds or to track dispersers. But at the same time spread models have appeared and advanced. However, Bullock really supports mechanistic models for wind-dispersed species, and these models seem to really provide insights. He then compared a handful of models for invasive and scarce natives, and did mechanistic modeling with climate change. Changes in future wind speeds may result in even larger changes in spread rates. Only Ailanthus appears to have dispersal rates at or faster than the rate of climate change, most species do not appear to be able to move fast enough (except animal dispersed species). Movement on shoes major dispersal vector.


Hans Jacquemyn was the final speaker, and talked about evolution and habitat fragmentation. He studies calcareous grasslands, forests and heathlands in Belgium that have increasingly become isolated and fragmented. Observed declines in genetic diversity in populations, as they get smaller in size. More recent fragmentations have less loss of genetic diversity compared to older fragments. Reduced seed output in small populations for self-incompatible species, results in reduced population growth rates. To counteract plants can increase floral displays or increase selfing rates, which they observed. Also, he has observed changes in timing of flowering and investing more in nectar.


*Some thoughts about the BES. It is a great Society, and a great meeting. It is relatively small and it is nice to see how many members know each other. For those of us in North America, I think it is a great experience to go to one of these meetings.

**I also participated in the BESdigital workshop on communicating science in a digital era. I will have a post about this tomorrow –I've been without internet connection at both the Sheffield dorm and various airports.

Monday, September 12, 2011

British Ecological Society meeting: day 1, the Tansley Lecture by Diane Wall

I am at the BES meeting in Sheffield. I will be spending most of the day in journal meetings, but I was able to attend the opening lecture. I will be able to attend more talks tomorrow.

Diana Wall gave the Tansley Lecture to open the meeting. The focus of her talk was about integrating soil biodiversity into ecosystem science. She started with a quote from Arthur Tansley about how all the aspects of an ecosystem can not be ignored, and Professor Wall argues that type soils, specifically the organisms living below ground have been largely ignored, and we do now live in an era where we can study all aspects of ecosystems. Her talk showed the ways in which soil orgasims matter and how global change may have consequences for the link between soil organisms and the ecosystem functions they provide.

This is especially important because soils are deteriorating globally, and while soils are home to an impressive diversity of organisms, so little understood about these organisms. Often we do not even know how many species are found in soils (though in many cases we are talking about hundreds or thousands of species per square meter, which means we can cannot predict how global change could affect these biota and the functions they provide.

She went through three examples to highlight the importance of soil organisms and research needs to predict the impacts of global change (here global change seems broadly defined including: temperature, precipitation, land use, and water flow). In the first example, she reviews the role of soil organisms in extreme ecosystems (Antarctic and hot desert) and how climate change may alter dynamics. Experiments show how important soil organism are for flow of nutrients and energy, and global change experiments show drastic changes in their abundance, thus we should expect large consequences as environments change, especially as moisture regimes change. In different systems, the relative importance of biotic vs abiotic drivers (e.g., the presence of plants versus moisture gradients) differs and differentially important for the ecosystem effects, and so more understanding is required for predictions.

In the second part, soil animals affect soil decomposition in moist places, thus changes in moisture affect ecosystem pathways. In the third part, she outlines the ways in which soil organisms provide ecosystem services, nutrient cycling, diseases, food, food webs, biocontrol, carbon storage, waster breakdown, etc. These services have been understudied and under appreciated.

Overall this talk was a lucid and poignant call for more work to be done on soil biota -not to know what is there necessarily, but rather to be able to link together the effects of changing environments on ecosystem function.