Tuesday, July 27, 2010

Enhanced biodiversity-ecosystem function relationships in polluted systems

*note: this text was adapted from an Editor's Choice I wrote for the Journal of Applied Ecology.

ResearchBlogging.orgIn this era of species loss and habitat degradation, understanding the link between biodiversity and functioning of species assemblages is a critically important area of research. Two decades of research has shown that communities with more species or functional types results in higher levels of ecosystem functioning, such as nutrient processing rates, carbon sequestration and productivity, among others. This research has typically used controlled experiments that standardize environmental influences and manipulate species diversity. However, a number of people have hypothesized that biodiversity may be even more important for the maintenance of ecosystem functioning during times of environmental stress or change rather than under stable, controlled conditions. It is during these times of environmental change that preserving ecological function is most important, as changes in function can have cascading effects on other trophic levels, compounding environmental stress. Therefore, explicitly testing how biodiversity affects function under environmental stress can help to inform management decisions.

Image from Wikimedia commons

In a recent paper in the Journal of Applied Ecology, Li and colleagues examine how algal biodiversity influences productivity in microcosms with differing cadmium concentrations. Cadmium (Cd) is a heavy metal used in a number of products and industrial processes, but it is toxic and Cd pollution is a concern for human populations and biological systems, especially aquatic communities. This is especially true in nations currently undergoing massive industrial expansion. In response to concerns about Cd pollution effects on aquatic productivity, Li et al. used algal assemblages from single species monocultures to eight species polycultures grown under a Cd-free control and two concentrations of Cd, and measured algal biomass.

Their results revealed that there was only a weak biodiversity-biomass relationship in the Cd-free teatment, which the authors ascribed to negative interactions offsetting positive niche partitioning. In particular, those species that were most productive in their monocultures were the most suppressed in polycultures. However, in microcosms with Cd present there were positive relationships between diversity and biomass. They attribute this to a reduction in the strength of competitive interactions and the opportunity for highly productive species to persist in the communities.

While a plethora of experiments generally find increased ecosystem function with greater diversity, Li et al.’s research indicates that the effect of biodiversity on function may be even more important in polluted systems. If this result can be duplicated in other systems, then this gives added pressure for management strategies to maintain maximal diversity as insurance against an uncertain future.

Li, J., Duan, H., Li, S., Kuang, J., Zeng, Y., & Shu, W. (2010). Cadmium pollution triggers a positive biodiversity-productivity relationship: evidence from a laboratory microcosm experiment Journal of Applied Ecology, 47 (4), 890-898 DOI: 10.1111/j.1365-2664.2010.01818.x

Thursday, July 22, 2010

Reinterpreting phylogenetic patterns in communities

Examining the phylogenetic structure of a community in order to understand patterns of community assembly has become an increasingly popular approach. A quick web search of “community”, “phylogenetics”, and “ecology” finds several hundred papers, most written in the last ten years.

Eco-phylogeneticists examine how patterns of evolutionary relatedness within communities may reflect the processes structuring those communities. In particular, a commonly tested hypothesis is the competition-relatedness hypothesis, which suggests that more closely-related species having more similar niches and therefore stronger competitive interactions, making coexistence between them less likely. As a result, if competition is important, communities may exhibit phylogenetic overdispersion, with species being less related on average than if drawn randomly from the regional species pool. The contrasting pattern, phylogenetic clustering, where species tend to be more closely related than expected, is often interpreted as being the result of strong environmental filtering, such that only a closely related group of species, best adapted to that environment, surviving in the community.

Evidence for the competition-relatedness hypothesis has been mixed, and since most tests of this hypothesis focus on patterns in observed data, conclusions about the underlying mechanism driving community phylogenetic patterns are rarely testable, and yet widely made.

In Mayfield and Levine (2010, Ecology Letters), the authors critique the current ecological justification for the competition-relatedness hypothesis, noting that it does not agree with a more current view of the processes driving species coexistence. As established by Chesson (2000, Annual Review of Ecology and Systematics), coexistence can involve both stabilizing forces (niche differences between species), and equalizing forces (fitness differences between species). In a simplistic example, plants using different soil types (niche differences) may coexist, while plants with similar high growth rates may exclude those species with lower growth rates (fitness differences). The final community should reflect the interplay of both these processes.

The implication of this view of species coexistence is that there is no preconceived phylogenetic pattern which should reflect competition: if species with the highest heights are competitively superior and exclude other species (coexistence driven by fitness differences), and height is a phylogenetically conserved trait, the community will appear to be phylogenetically clustered. Traditionally, a clustered pattern would not be considered to indicate the effects of competition. In fact, Mayfield and Levine show that the expected phylogenetic pattern depends entirely on whether niche and/or fitness differences are important and/or related to phylogenetic distance.

This suggest that conclusions in past studies may need to be reinterpreted. It also adds to the list of assumptions about evolutionary relatedness and ecological function which need to be tested: for example, how do niche and fitness differences tend to change through time? Do they tend to be conserved among closely related species? Does one or the other tend to dominate as a driver of coexistence in different systems? If nothing else, we need to be careful about making generalizations which don’t account for the differing evolutionary history, geographical location, and ecological setting that communities experience, when interpreting observed patterns in those communities.

Wednesday, July 7, 2010

Organic farming and natural enemy evenness

ResearchBlogging.orgThe basic reality of agricultural activity is that it reduces biological diversity, and these reductions in diversity potentially impact ecosystem services. But do some agricultural practices impact these services less than others? In a recent paper in Nature by David Crowder and colleagues, the question of how organic versus conventional farming affects predator and herbivore pathogen diversity and how this cascades to pest suppression. They show through a meta-analysis, that organic farms tend to support greater natural enemy evenness, and they hypothesize that greater evenness of enemies should better control pest populations, resulting in larger, more productive plants.

Picture from wikipedia

This result in itself is interesting, but they also carried out an elegant enclosure experiment where they manipulate the evenness of insect predators and pathogens and measure potato plant size. They found that even communities had the lowest herbivore densities and saw the greatest increases in plant biomass. Conversely, very uneven communities, typical of conventional farms, had the largest pest populations resulting in lower plant biomass accumulation.

While, multiple farming strategies are needed for adequate agricultural production, there are strong arguments for organic farms to be a important part of agricultural practice. These results show that organic farms have cascading effects on pest predators and pathogens and show that enemy evenness, as opposed to richness, has important ecosystem service consequences. To quote myself, evenness is a critical component of biodiversity, and much research has emphasized species richness, maybe at the detriment of studying evenness.

Crowder, D., Northfield, T., Strand, M., & Snyder, W. (2010). Organic agriculture promotes evenness and natural pest control Nature, 466 (7302), 109-112 DOI: 10.1038/nature09183

Saturday, June 12, 2010

Happy Year of Biodiversity

It’s ironic that during the International Year of Biodiversity, the US is experiencing an environmental disaster on a massive scale. Unfortunately, this disaster is just another failure in environmental protection, part of a long series of failures which seem to characterize this Year of Biodiversity. Even as the political will behind the 2010 biodiversity targets seems to have waned (and most indicators suggest that declines in diversity are unchecked), evidence continues to mount for the functional value of biological diversity.

This week’s issue of Nature features a couple of pieces focusing on biodiversity through a political or economic lens. Although the economic benefits and services provided by species-level diversity has been well illustrated, in “Population diversity and the portfolio effect in an exploited species”, Schindler et al. (Nature, 465, 609-612) new evidence that at even finer divisions than the species, diversity plays an important role. In this case, they find that genetic diversity at the population level is an additional and significant contributor to ecosystem stability. Schindler et al. examine the effects of hundreds of locally-adapted populations of sockeye salmon on the valuable salmon fishery in the Bristol Bay area of Alaska. They suggest that the portfolio effect (or the robustness of biodiversity to variable conditions – like a diverse financial portfolio) can function at the population level as well as the species level. High levels of intra-specific diversity can produce temporal variation among populations in response to environmental variability, resulting in catches that are more stable year-to-year, and making fishery closures less likely, a clear economic benefit.

Populations are declining at an even faster rate than species themselves: the more we understand the importance of conserving diversity at multiple biological scales (ecosystem, species, population, even the individual?), the more complicated and onerous the task of conserving diversity becomes.

In the same issue of Nature is an editorial on the possibility of an IPCC-like panel for biodiversity. At this very moment (give or take a few time zones), government representatives from all over the world are deciding whether or not to create this panel. So far, they have a catchy name for it, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), which hopefully hasn’t been written in stone. But they also have a strong recognition of the inextricable links between biodiversity, ecosystem services and human wellbeing – links that are highlighted in the Schindler et al. article. Furthermore, an explicit goal of IPBES is to address the currently tangled state of biodiversity organizations, conventions and programs by forming a unified front of sound biodiversity policy and science. The Convention on Biological Diversity had set a target of halting biodiversity loss by 2010 and we have failed spectacularly. Is IPBES the solution?

Wanted: an IPCC for biodiversity. Nature, 465, 525-525


Schindler, D.E., Hilborn, R., Chasco, B., Boatright, C.P., Quinn, T.P., Rogers, L.A. & Webster, M.S. Population diversity and the portfolio effect in an exploited species. Nature, 465, 609-612

By Nick Mirotchnick and Caroline Tucker

Wednesday, June 9, 2010

Another reason why a new publishing model is needed...

The finances and ethics of scientific publishing are complex, and there is an inherent tension between commercial publishers and academics and their institutions. On the one hand, we as scientists are (most often) using public money to carry out research, usually in the public interest, and then we typically publish in for-profit journals that restrict public access to our publications. Authors seldom see any of the financial return from publisher profits. On the other hand, publishers provide a level of distribution and visibility for our work, which individual authors could not match. In previous posts I have discussed Open Access publications, but there is another reason to consider other publication models. Recently Nature Publishing Group notified the University of California system of an impending 400% increase in the cost for their publications. The UC administration has responded with an announced plan to boycott NPG publications. The announcement rightly points out a 400% increase is not feasible given the current plight of library budgets, especially in California, and that scientists in the UC system disproportionately contribute to publishing, reviewing and editing NPG publications and thus are the engine for NPG profits. (See a nice story about the boycott in The Chronicle of Higher Education)

This is just the latest symptom of the growing tension between publishing and academia, and is a stark reminder that other publishing models need to actively supported. Perhaps the UC system could invest in open access publishers in lieu of NPGs outrageous costs? Something has to give, and perhaps the UC boycott will remind libraries that they hold the purse strings and could be the greatest driving force for change.

Tuesday, June 1, 2010

Experimental test of Darwin's naturalization hypothesis

ResearchBlogging.orgAmong the numerous and still informative ecological predictions made by Darwin, one posits that when species are introduced into regions where they were not formerly found, the most successful tend to not have close relatives already occupying the region. This is known as Darwin's Naturalization Hypothesis, and his logic was that among close relatives, where ecological requirements should be most similar, the struggle for existence is most severe. Thus the modern formulation is that invader success is influenced by the amount of time since two species shared a common ancestor (usually called phylogenetic distance). Tests of this hypothesis have been primarily done on large species inventories, with results from different studies either supporting or refuting it. In a new study by Lin Jiang and colleagues published in the American Naturalist, they cleverly use bacteria with known relatedness to test this hypothesis.

They used four species of bacteria: Bacillus pumilus, B. cereus, Frigoribacterium sp. and Serratia marcescens as residents in every possible 1, 2, 3 and 4-species communities and invaded them with a subspecies of S. marcescens. What they found was that the invader density was highly significantly related to phylogenetic distance, so that the invader reached its greatest density when communities contained only distantly-related species.

Though these types of laboratory experiments are simplistic (I too use these systems), they offer insights into particular mechanisms, which may otherwise be difficult to detect in noisier systems.

Jiang, L., Tan, J., & Pu, Z. (2010). An Experimental Test of Darwin’s Naturalization Hypothesis The American Naturalist, 175 (4), 415-423 DOI: 10.1086/650720

Tuesday, May 25, 2010

The successful launch of MEE

Usually, I view the release of a new journal with some skepticism. There are so many journals and it feels like academics are over-parsing fields, isolating researchers that should be communicating. However, sometimes a journal comes along and it is obvious that there is a need and the community responds to its arrival. Such is the case with the British Ecological Society's newest journal, Methods in Ecology and Evolution, started by Rob Freckleton. The idea that a journal would be dedicated to methods papers is a great idea. This era of ecology and evolution is one that is defined by rapid advances in experimental, technological and computational tools and keeping track of these advances is difficult. Having a single journal should make finding such papers easier, but more importantly provides a home for methodological and computational ecologists and evolutionary biologists, which will hopefully spur greater communication and interaction, fostering more rapid development of tools.

Two issues have been published and they have been populated by good, entertaining articles. I especially enjoyed the one by Bob O'Hara and Johan Kotze on why you shouldn't log transform count data. As a researcher, I've done this (instead of using a GLM with proper distribution) and as an editor, I've allowed this, but it has always felt wrong somehow, and this shows that it is.

The early success of the journal is not just the product of the good papers it has already published, but also because of the savvy use of electronic communication. They Tweet on Twitter, link fans through Facebook, blog about recent advances in methods from other journals and post podcast and videocast interviews with authors. These casts give readers access to authors' own explanations of how their methods can be used.

I am excited about this new journal and hope it has a great impact on the publication of methodological papers.

Tuesday, May 11, 2010

Picante's coming out party

This past decade has seen a rapid expansion of the use of evolutionary phylogenies in ecological studies. This expansion is largely due to the increased availability of phylogenies, but has resulted in new types of hypotheses and statistics aimed to test the phylogenetic patterns underpinning ecological communities. The main computational tool used has been phylocom, created by Cam Webb, David Ackerly and Steve Kembel, which has its own binaries to be installed on one’s computer. However, a new R package, picante has been created by Steve Kembel and colleagues which runs many of the same routines as in phylocom, but in the R framework, allowing one to tie these analyses in better with other, non-phylogenetic tests. Picante also has a number of features and tests not found in phylocom, including tests of phylobetadiversity and phylogenetic signal using Blomberg’s K.

Thanks Steve for all your hard work and for making these tests available to everyone.

Kembel, S., Cowan, P., Helmus, M., Cornwell, W., Morlon, H., Ackerly, D., Blomberg, S., & Webb, C. (2010). Picante: R tools for integrating phylogenies and ecology Bioinformatics DOI: 10.1093/bioinformatics/btq166

Tuesday, April 27, 2010

Niche or Neutral? Why size matters.

Metacommunity dynamics (i.e. the effects of dispersal among connected communities) have become an increasingly common lens through which to explain community structure. For example, competition-colonization models explain the coexistence of superior and inferior competitors as the result of a trade-off in colonization and competitive ability. Species are either superior competitors, with high probabilities of establishing in patches, but low ability to move between patches, or superior colonizers, which have tend to lose in competitive interactions but can travel easily between patches. Under this framework, the ability of superior colonizers to reach and maintain populations in patches where their superior competitors are absent allows them to avoid extinction.

One problem with these types of models is that they rarely acknowledge the importance of ecological drift – that is, that chance events also affect species interactions. This despite the fact that we know that in “real life”, chance events likely play a major role in producing assemblages different than those we might predict based on theory. One of the strengths of the Hubbell’s neutral model is that it recognizes and embraces the importance of randomness.

A recent paper by Orrock and Watling (2010) examines how chance events can alter the predictions of the classic competition-colonization model. Orrock and Watling show that the size of communities in a metacommunity (which is assumed to correlate with the strength of ecological drift) determines whether community dynamics are niche-structured or neutral in nature. In large communities, predictions agree closely with those of the classic competition-colonization model, and niche-based interactions (i.e. competitive hierarchies) dominate. It’s in small communities that things get interesting: ecological drift becomes more important, so that differences in competitive ability between species are effectively neutralized. As a result, small communities begin to resemble neutral assemblages in which species abundances don’t relate to differences in competitive ability. An interesting consequence of this outcome is that species who are poor competitors but good colonizers have an additional refuge – simply by escaping to small communities, even if these communities contain superior competitors, they can persist in a metacommunity.

Beyond the theoretical implications of this model, the applied implications are what really matter. Habitat destruction and fragmentation are an growing problem due to human activities. Habitat patches are often smaller, and of lower quality, decreasing the size of the community each patch can support. Even if these patches are still connected and functioning as a metacommunity, species which rely on their strong competitive ability for persistence will lose this advantage as assemblages become increasingly neutral. Under this model, community diversity declines even more as habitat is lost than in the traditional competition-colonization model, and superior competitors face even greater extinction risk than previously predicted.

Since in reality, metacommunities are likely to consist of patches of different sizes, rather than all large or all small patches, the predictions here remain to be extended to more realistic metacommunities. However, Orrock and Watling have produced a useful model for understanding how ecological drift can affect diversity in a metacommunity and alter the expectations of traditional competition-colonization models.


Orrock, J.L. and Watling, J.I. (2010) Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B.