Showing posts with label conservation. Show all posts
Showing posts with label conservation. Show all posts

Wednesday, November 21, 2018

Tea Time with Amazigh People

Guest post by University of Toronto-Scarborough MEnvSc Candidate Erin Jankovich



 “How do they survive?” This is the question I kept asking myself over and over as I sat sipping my mint tea on the clay floor of an Amazigh cave in the Moroccan mountains. Their faces, hands, tea-kettle and even my cup were layered with dirt and soot. Outside, prevailing winds dusted the lonely peaks of the High Atlas with orange silt. I never expected to stumble across an indigenous settlement when I set out on my hike that day, let alone be invited for tea. This was by no means a fancy tea party, but it certainly was a memorable one.

Women plucked leaves from dry aromatic plants and a man filled a kettle for more tea. A toddler sat beside me and gestured to trade his clay ball for my Nikon. I felt like a fly on the wall in a National Geographic documentary.

I was on to my third cup of tea when a young man broke the silence. “Hello, do you speak English”, I heard from behind me. Dressed in traditional Amazigh clothes, this young man carrying a notepad and pen excitedly sat down beside me. He was a university student from Japan who had been living with this Amazigh family for four months to learn about their culture. Perfect! Maybe he could enlighten me as to how these people sustain their lives on this rugged mountain top - surely there was more to it than mint tea.

Mint tea, a traditional Moroccan drink and symbol of hospitality. Photography: Erin Jankovich

The young man pointed out across the valley and said “see”. For a while, all I saw was an expanse of orange rock but eventually like a stereogram the landscape came to life. Those little black dots were goats, dozens of goats! He walked me to the trailhead and pointed at the pale green tufts across the landscape. Mint, rosemary, sage, thyme, and verbena – these aromatic plants were right beneath my nose. This dusty landscape wasn’t so dead after all. He explained that the Amazigh people have extensive knowledge of the medicinal properties of hundreds of plants that grow in the High Atlas, and women will take several hour journeys to sell herbs in the valley markets. I wanted to learn more, but I was reminded of the long trek back to Tinerhir. I said goodbye, and thanked them all for such generous hospitality.

Afternoon tea with Amazigh family. Photography: Erin Jankovich
Morocco is dominated by a mountainous interior, bordered with rich coastal plains to the west and Sahara desert to the east. Since coming home from my trip, I have learned that this unique geography falls within the Mediterranean basin, a global biodiversity hotspot teeming with endemic flora and fauna found nowhere else on the planet (Rankou et al. 2013). Morocco alone has 879 endemic plants, the majority of which are restricted to the High Atlas region (Rankou et al., 2013).

The rich biodiversity of the High Atlas has been known to the Amazigh people for thousands of years, but only recently have researchers and scientists begun to draw their attention to this unique area. In 2015, scientists used IUCN Red List criteria to assess the status of endemic Moroccan flora and determined that many species are at risk of extinction due to climate change and habitat degradation (Rankou et al., 2015). These scientists emphasized that mountainous regions such as the High Atlas are especially sensitive to changes in climate and should be a top priority for conservationists, but so far very little research has gone into understanding the vegetation dynamics of this region.

Fresh and dry plants used for medicinal purposes found in traditional markets (image from Bouiamrine, 2017).
Many plant species picked by the Amazigh are highly toxic and dangerous to humans if not used appropriately (Mouhajir et al., 2001). Anecdotal evidence through surveys and interviews have revealed that the Amazigh people, specifically senior women, are experts in distinguishing between medicinal herbs and continue to pass on this traditional knowledge from one generation to the next (Bouiamrine, 2017). Many Moroccans still rely on traditional medicine to maintain good health thus conservation of these endemic herbs is critical for both the lives of the Amazigh and Moroccan market economy (Bouiamrine, 2017).

An Amazigh woman journeys across rugged terrain to sell herbs in modern markets. Photography: Erin Jankovich
I know better now that not all hotspots of biodiversity look like lush tropical jungles, but what they do have in common is an abundance of unique species that are threatened with extinction. Internationally the Mediterranean Basin has been recognized as providing significant ecosystem function and I was pleased to find that the Moroccan government has set national targets to preserve biodiversity and inventory traditional knowledge by 2020 (CBD, 2011).

Who better than the indigenous people of the High Atlas to help us understand the historical distribution of endemic plants and potential range shifts induced by climate change? Through sensitive and purposeful strategies for interaction with the Amazigh people—like the young student sharing a tea in the mountain—we may find that complimenting science with traditional ecological knowledge is the key to saving these unique landscapes.

References
Bouiamrine, E.H., Bachiri, L., Ibijbijen, J., & Nassiri, L. (2017). Use of medicinal plants in Middle Atlas of Morocco: potential health risks and indigenous knowledge in a Berber community. Journal of Medicinal Plant Studies, 5(2), 388-342.
Convention on Biological Diversity (2011). Electronic source. Retrieved from: https://www.cbd.int/countries/targets/?country=ma
Mouhajir, F., Hudson, J.B., Rejdali, M., & Towers, G.H.N. (2001). Multiple antiviral of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical Biology, 39(5), 364-374.
Rankou, H., Culham, A., Jury, S.L., & Christenhusz M.J.M. (2013). The endemic flora of Morocco. Phytotaxa, 78 (1), 1-69.
Rankou, H., Culham, A. ,Taleb, M.S., Ouhammou, A., Martin, G., & Jury, S.L. (2015). Conservation assessments and Red Listing of the endemic Moroccan flora (monocotyledons). Botanical Journal of the Linnean Society, 177, 507-575.

Tuesday, March 27, 2018

The problematic charismatics: Are loveable invasives getting a free pass?

Guest post by Will Brown, MEnvSci Candidate in the Professional Masters of Environmental Science program at the University of Toronto-Scarborough

In the world of animal conservation, charismatic wildlife - those loveable, huggable species like giant pandas or koalas - take centre stage. They’re the kinds of animals you see dominating news stories, books, and movies, with less-attractive species often falling by the wayside. The concept of charismatic species is tied closely to animal conservation and protection. And the public’s love and adoration for charismatic creatures plays an essential role in the success of conservation and awareness campaigns. As flagship species they become ambassadors and icons, rallying support and focusing the public’s attention (and money) on an environmental cause or conservation program.
Figure 1 A famous example of a charismatic species used as a flagship species for a conservation group, the World Wildlife Fund (WWF). (Source)

For many years, a societal bias for charismatics has been important for protecting and conserving rare and imperilled species. But what happens when a charismatic species, rather than requiring protection, is considered an invasive pest? And how does this affect the proper implementation of invasive species management and threat abatement?

A perfect example of a charismatic species as an invasive pest is wild horses, known as brumbies, in Australia. First introduced for farm work in 1788, there are now over 400 000 brumbies throughout the country. As an invasive this species causes erosion and damages vegetation with their hard hooves and overgrazing. They damage and foul waterholes and spread weeds through seeds carried in their dung, manes, and tails. As competitors with native species, they can force wildlife from favoured habitats and dominate food and water sources. There is a significant portion of the public, however, that see the brumby as an iconic Australian species that is  ’a unique equine and epitomizes the spirit of freedom’.
 
Figure 2 Feral horses threaten fragile ecosystems in Kosciusko National Park. (Source)
To manage the impacts of brumbies in Kosciuszko National Park, a plan was released in 2016 to reduce the number of wild horses by 90% over a 20-year period. The cull was to be carried out using humane control methods including trapping, fertility control and ground shooting rather than aerial shooting and roping. The management plan sparked angry protests and fierce opposition, despite warnings from scientists about the impacts of brumbies in the region. Even though government scientists declared that the horse population in the region severely degrade natural waterways and threaten fragile native alpine wildlife, hundreds of people protested the cull in Sydney and support groups downplayed the adverse effects brumbies have had on the environment. Lisa Caldwell of the Snowy Mountain Horse Riding Association was reported as saying ‘You've got to remember that the national park is 6,900 square kilometres…horses are not going to have a huge impact on those wetlands’ (www.abc.net.au).

Now almost 2 years on, backlash to the draft legislation has halted any form of management and a new amended management plan is in the works. It is reported that the amended plan includes less aggressive reduction of wild horses, with culling more likely to reduce the numbers to several thousand rather than just 600. To overcome Australia’s environment laws that require a more complete removal of wild horses, a ‘brumbies bill’ is being put forward to give recognition to the horses’ ‘cultural significance’, providing them with legal protection to remain in the park.

Now consider how an uncharismatic species is treated in a similar situation. The feral pig, generally perceived as dirty, disease-ridden and hated by farmers, also roams through Kosciuszko National Park and has very similar impacts on the environment. Feral pigs degrade natural areas through rooting up soils, grasslands and forest litter as they feed on native plants. They also spread a number of diseases and predate on a host of native animals including insects, frogs, snakes and small ground-nesting birds. Unlike brumbies however, their numbers are managed within in the park with almost no opposition.
 
Figure 3 Feral pigs populations are controlled in Australia with minimal public opposition. (Source)
In both cases there are two species found in the same location, negatively impacting the ecosystem in a similar way. For the uncharismatic species, management plans are carried out promptly and effectively. But for the charismatic species, it seems clear that societal bias can lead to strong resistance from the public and as a result, management efforts can be delayed or watered down.

And this pattern isn’t restricted to Australia. In Canada, introduced feral cats are the No.1 killer of birds, responsible for over 100 million bird deaths per year. Even with this information available, there is no widescale control programs for managing feral cat populations. In British Columbia, an exploding European rabbit population at the University of Victoria was responsible for extensive damage to fields, lawns and mature trees. When the university tried to implement a removal program, public outcry delayed efforts and the university ended up committing to using non-lethal methods for controlling the rabbit population. Meanwhile, less cute and fluffy invasive species such as America bullfrogs in BC have active population control programs with almost no objection from the public.

Based on these examples, it is clear there is a degree of favouritism when it comes to how invasive species are perceived and subsequently managed. With an obvious bias towards charismatic species, the power of public opinion can have significant impacts on invasive species control. This in turn has the potential to result in severe ecological consequences. Unfortunately, due to the complexity of the issue there is likely no single solution. The most impactful approach may be to increase the public’s awareness of the negative impacts of invasives with a focus on how these species may be damaging native wildlife. A more controversial approach may be to simply provide government scientists with greater decision-making power when it comes to wildlife management, especially for federally and state-owned lands. Adding to the complexity of the issue is how valuable are the cultural ecosystem services provided by charismatic invasives. Are the cultural benefits of invasive species as important as those provided by native species? This is an important question that should be addressed in evaluating the overall impacts caused by invasive species. Biases present in invasion biology are rarely discussed but the issues are clear. For the effective management of all invasive species, whether huggable or ugly, these biases should be recognised and carefully considered. 

Thursday, March 8, 2018

The Gender-Biased Scientist: Women in Science

Guest post by Maika Seki, MEnvSci Candidate in the Professional Masters of Environmental Science program at the University of Toronto-Scarborough

In November of 2017, Nature Ecology & Evolution published “100 articles every ecologist should read” by Courchamp and Bradshaw, sparking a social media outrage. Rightfully so, because the list of first authors only included two women. There remains a pervasive perception that women lack the skills to practice science, and that there simply are not enough women in the field for them to have made a significant contribution, referring to the male-dominated history of the sciences. Many of us have come across studies highlighting gender bias in science education - which people have attempted to use to explain gender gaps in STEM fields. However in 2011, neuroscientist Melissa Hines found no significant difference between the mathematical, spatial, and verbal skills of boys and girls. But of course that finding did not receive much attention. In light of the emerging discourse of vital inclusivity in science, now is the time to confront our own social biases with the goal of achieving gender equity in the scientific community.

Instead of rehashing these outdated arguments, why don’t we talk about the barriers that women face in science? Why don’t we talk about the sexism in the publishing and peer-review process? In 2015, evolutionary geneticist Fiona Ingleby submitted a research paper to PLOS ONE, where the peer-reviewer suggested that she work with male biologists in order to strengthen the study, stating, “It would probably … be beneficial to find one or two male biologists to work with (or at least obtain internal peer review from, but better yet as active co-authors).” The under-recognition of women scientists has been so rampant in the fabric of science that it has been coined the Matilda effect; named after the first women scientist to comment on the phenomenon, Matilda Jocelyn Gage.
   
Why don’t we talk about the barriers women face in accessing employment in science, even while possessing the same qualifications as their male counterparts? At Yale University, a study was conducted wherein over 100 scientists assessed a resume for a job posting. The only difference between the resumes were the names; half of them were given recognizably male names, and the other half recognizably female names. The resumes submitted under the female names were deemed significantly less competent and employable, and were offered lower salaries. Clearly there is work to be done.

And then there was Tim Hunt, a Nobel laureate who made outright sexist comments at the World Conference of Science Journalists stating, “Let me tell you about my trouble with girls … three things happen when they are in the lab … You fall in love with them, they fall in love with you and when you criticize them, they cry.Twitter responded with the hashtag #DistractinglySexy, where women scientists shared unglamorous photos of them doing their research work. Hunt subsequently resigned from his honorary post at the University College-London. We may think that this is an exceptional and isolated event, but studies show that we are not immune to these kinds of social forces of gender discrimination, even if we like to think so — especially as scientists. These seemingly minor micro-aggressions translate to devastating and tangible effects, such as the gender pay gap. 





Photo by @STEPHEVZ43 on Twitter, as a response to Tim Hunt’s sexist comments.



Within scientific fields, we like to pride ourselves in being as close to bias-free as possible with our empirical, quantitative, and reproducible data. But scientists are people, and as such, we must confront the cultural and social influences that may permeate our objectivity. As scientists, we do not like to admit to this. But if we are going to arrive as close to the truth as possible, we need to capitalize on the emerging discourse of gender issues in science.
    
As of 2015, Canadian women represented only 22% of the STEM workforce. Not only are women under-represented in the workforce despite 62% of undergraduate students being women, but they are under-compensated. According to Statistics Canada, the wage gap persists across all fields, with the women median income of a bachelor’s degree being $68,342, and $82,083 for men. This is not a “third world” problem. This is a global issue. It is indisputable that there are systemic barriers that women face when pursuing careers in science. So why can’t scientists consider the confounding social factors at play that create these patterns? In science when somebody denies a phenomenon after many analyses point to the same mechanism, we would likely consider that as being irrational. With this in mind, is the denial of gender bias in science not irrational? By acknowledging these biases and promoting change, we take aim at the lack of objectivity in the discipline of science. It should also be encouraged to confront the sexism, racism, and all other intersectionalities of power imbalance within the science community. Some may argue that there is no place for politics in science, but we must face the reality that the two can not be separated. Addressing the sexism would bring us better, more balanced science. 


Statistics Canada graph on the Canadian men and women in STEM fields.


How can we aspire towards a world of innovation and ground-breaking research when roughly half of the population is held back? And how can we address it? To start, we need to hold institutions more accountable. It is disheartening to know that had people not reacted to the all-male panels, it would not be seen as a problem. Furthermore, it is not enough to tweet about it. It’s a start, but not nearly enough — because how many of these types of stories repeat themselves in the media? We need it to be written in the mandates of institutions, and this is not enough. We need it to be enforced. We also need women to be more involved and hold power in these decision-making panels; it is not enough to throw in a token white woman and call it a day. It is not enough for women to be given a seat on the board as a corporate marketing tool under the guise of inclusivity. They must also be afforded the same power that men have. We need to hold each other more accountable. We need to confront our own prejudices, no matter how uncomfortable that may be. If not for women, then do it for practical and selfish reasons; do it because there are studies that show that women have to be more productive than men to be deemed equally scientifically competent (feeling the pressure to prove themselves). And do it because it is better for the economy, and because diversity in the workplace increases productivity




Graph by The Star on the income of full-time men and women in Canada, who have a bachelor’s degree.


There is no good reason to continue to exclude women from the same influential roles that men have, and it is time that we each consider our own sexist views (whether sub-conscious or not). It is time to challenge the systemic biases in powerful institutions in order to let women claim their full potential as true peers to men; as colleagues, partners, scientists, and in all other walks of life. In order to increase scientific literacy, we can not afford to continue to exclude women from science, because science needs women. In the spirit of the United Nations’ International Day of Women and Girls in Science day, which passed on February 11th, and International Women’s day today, let us commit to empowering women to reach political, social, and economic equality to men. And let us make changes in our own lives, begin conversations with those around us, and become more active in our communities to progress towards gender equity.


Wednesday, November 22, 2017

Of course we need to save endangered species: a response

I spend a lot of time thinking about the related topics of conservation, biodiversity, and evolution, so I was interested to see an editorial in the Washington Post on precisely those issues. The article, "We don’t need to save endangered species. Extinction is part of evolution" by Alex Pyron, presents a misrepresentative and potentially harmful position about the future of the earth's biota.

Pyron begins by stating that "Evolution loves death." Selection necessarily means the success of one variant at the expense of others, and today's living creatures are the survivors of an ongoing battle for existence. Extinction is not a modern phenomenon by any means. There have been five mass extinctions, including the glaciation of Gondwana and the impact of an asteroid that lead to the loss of the dinosaurs.

But the 6th great extinction (the Anthropocene extinction - the one we are currently living in) shares little in common with these past events. This is the only extinction that a single species (humans) are primarily responsible for, through activities from habitat conversion or degradation, land fragmentation, warming climate, ocean acidification, and human consumption of natural resources. In this context, Pyron's argument seems to be that we ought to retain an anthropocentric viewpoint of conservation as well. That is, we are simply selecting for species that can survive in our wake, and we should feel concern only for those species that we need.
"But the impulse to conserve for conservation’s sake has taken on an unthinking, unsupported, unnecessary urgency. Extinction is the engine of evolution, the mechanism by which natural selection prunes the poorly adapted and allows the hardiest to flourish. Species constantly go extinct, and every species that is alive today will one day follow suit. There is no such thing as an “endangered species,” except for all species. The only reason we should conserve biodiversity is for ourselves, to create a stable future for human beings. Yes, we have altered the environment and, in doing so, hurt other species. This seems artificial because we, unlike other life forms, use sentience and agriculture and industry. But we are a part of the biosphere just like every other creature, and our actions are just as volitional, their consequences just as natural. Conserving a species we have helped to kill off, but on which we are not directly dependent, serves to discharge our own guilt, but little else."
This is hardly an original viewpoint (hastening to the Bible's 'Then God said, “Let Us make man in Our image, according to Our likeness; let them have dominion over the fish of the sea, over the birds of the air, and over the cattle, over all the earth and over every creeping thing that creeps on the earth.'). But it is a short-sighted one. Ignoring more philosophical arguments about the intrinsic value of all species, the arguments presented are problematic and incomplete, and the potential cost could be huge.

Pyron notes that we may be over-estimating the loss of species:
"According to some studies, it’s not even clear that biodiversity is suffering. The authors of another recent National Academy of Sciences paper point out that species richness has shown no net decline among plants over 100 years across 16,000 sites examined around the world."
The study cited by Pyron here does not support the assertion that biodiversity is fine. In fact, Vellend et al (2013) show that at local scales, plant diversity (i.e., the number of plant species; species number being only way of characterizing biodiversity) has been stable. This isn't the same as saying species are not being lost at a global scale. In a follow-up piece (Vellend et al. 2016), the same author notes that at the global scale, "Nonetheless, if we take 142 and 592 as somewhere in the ballpark of extinctions that have occurred between 1600 and 2016, we get extinction rates of 0.98–4.1, 1–2 orders of magnitude higher than the background rate." Outside of plants, Pimm et al. (2014)'s comprehensive review of extinctions in birds, amphibians, and mammals show extinction rates have at least doubled since 1900. These are rates much higher than considered 'natural'. Even when no extinctions have occurred yet, populations are declining rapidly (Ceballos and Ehrlich 2014, Ceballos et al 2017).

An anthropocentric approach also requires complete understanding and control of our environment. Preventing the loss of the species we need or the ecosystems we rely on is not straightforward (as seen by the rarity with which species become 'non-endangered'). Humans are still under-informed about ecosystem services and goods, and what biotic and abiotic interactions are essential to maintain them. The existence of IPBES is a good indicator of how essential and lacking this information is. To confidently state that "Conserving a species we have helped to kill off, but on which we are not directly dependent, serves to discharge our own guilt, but little else" ignores the indirect linkages that might matter, and our lack of knowledge of them.

Further, the philosophy that humans will survive somehow, in the face of losses of biodiversity and changing planetary climate is probably mostly true for the richest members of the planet. Elsewhere, food shortage associated with climate change (eg.) and water shortages (eg.) already threaten individuals in less wealthy countries.

Ironically, Pyron suggests that all we need to make this reality is "moderation".
"The solution is simple: moderation. While we should feel no remorse about altering our environment, there is no need to clear-cut forests for McMansions on 15-acre plots of crabgrass-blanketed land. We should save whatever species and habitats can be easily rescued (once-endangered creatures such as bald eagles and peregrine falcons now flourish), refrain from polluting waterways, limit consumption of fossil fuels and rely more on low-impact renewable-energy sources....We cannot thrive without crops or pollinators, or along coastlines as sea levels rise and as storms and flooding intensify."
But the anthropocentric view of the world that he presents is the opposite of moderation. It favours only humans. In many ways it's the other extreme of the Half-Earth proposal that suggests we set aside half the planet made free of humans. Having been told we don't need to value species beyond our current needs and interests assumes that we will capably and correctly identify those needs and goals, including for time frames beyond our own myopic lifespans. This uncertainty means that a human-centric view may be just as harmful to humans as approaches that ascribe value for biodiversity more value. And humans have proven willing and capable of taking much broader and more effective actions, that accommodate both humans and other organisms. (As FDR said and did: "We have fallen heirs to the most glorious heritage a people ever received, and each one must do his part if we wish to show that the nation is worthy of its good fortune.")

It's frustrating to see this kind of description of biodiversity as though the earth is simply a plus-minus ledger of species – a few lost here, a few gained there.

A conservation baseline is meant to capture an idealized Eden is of course unreasonable. But Pyron's view looks like Hell. ("If this means fewer dazzling species, fewer unspoiled forests, less untamed wilderness, so be it. They will return in time.")


Edit (Nov. 24): the TL:DR is that 
a) I thought the author cherrypicked the ecological literature and downplayed what we know about the loss of biodiversity and the complex/negative effects of human actions; 
b) if the argument is that we should think about biodiversity over timescales of millions of years, humans don't matter anyways; 
c) if we do care about humans, utility values of biodiversity are an acceptable focus of conservation. But it would be misguided to think that we have a perfect understanding of how ecosystems work or a perfect ability to forecast our impacts. For reasons of uncertainty, sampling effects and option value argue that we preserve as much diversity as we can;
d) Non-economic utility values (aesthetic, cultural values) are a good argument for conservation too. Most of us want to leave our children a beautiful planet that is full of life. 

Friday, October 27, 2017

Positive cost-benefit analysis for conservation spending

In a time when most news about human impacts on the Earth's biodiversity seems to be negative, a new paper in Nature provides a glint of good news about our ability to change the current trend of loss. Encouraging new conservation efforts and funding may be contingent on providing evidence that such efforts will actually be effective.

The new report from Waldron et al. (2017) provides evidence for a predictable relationship between conservation spending and reduction of biodiversity loss. They focused on signatory countries of the Earth Summit's Convention on Biological Diversity and Sustainable Development Goals, and developed a pressures-and-conservation-impact’ (PACI) model to predict how biodiversity loss changed in these countries between 1996-2008. Improvements were driven by conservation spending (relativized to reflect differences in buying power between nations) and were counteracted by GDP growth and agricultural expansion. 

Using this model, the authors could predict how the conservation investments made in these nations had affected their loss of biodiversity, as compared to the scenario in which no investment had been made. Amazingly, the median loss of biodiversity per nation was 29% lower than would otherwise have been expected. Over 1996-2008, seven countries even had net biodiversity improvements: Mauritius, Seychelles, Fiji, Samoa, Tonga, Poland and Ukraine.

Fig 1. Map of biodiversity decline scores (BDS) for signatory nations.
"Colours show percentage of all global declines (total BDS) associated with each country. Pie charts show the predicted reduction in decline (in black) if spending had been I$5 million higher (for selected countries); pie size represents the square root of the BDS. Inset shows predicted versus observed BDS (log-transformed) for the continuous model".

They discuss a number of interactions among model terms that capture greater socio-economic complexity - for example, the impacts of GDP growth on biodiversity loss are lower when a country's base GDP is very low. Such large scale studies naturally face data limitations - here, they use mammal and bird Red List status changes to develop a quantitative measure of biodiversity loss. Other taxa presumably show similar trends, but we lack the data to incorporate them at this moment.

Hopefully by demonstrating this cost-benefit analysis for conservation actions, Waldron et al. (2017) encourage future 'investors' as to the payoff of spending on conservation. 

Monday, April 3, 2017

Biodiversity conservation in a human world: do successes involve losses?

It's become commonplace to state that the world is in the midst of a mass extinction event. And there is no doubt about the cause. Unlike previous mass extinction events, like the cretaceous extinction event that saw most dinosaurs disappear, the current extinction event is not caused by a geological or astrological event. Rather, the current extinction event is caused by a single species, humans. Through habitat destruction, wildlife harvesting, pollution, and the introduction of pest species to other regions, the current extinction rate is 100 to 1000 times higher than it should normally be. We often think of human legacy in terms of art or architecture, but a permanent scar in the biological record of the Earth is our greatest legacy.

Of course many people and some governments are very concerned about our impact, and have committed to try to conserve elements of the remaining natural world. How best to do this is largely influenced by conservation biology, a field of research and applied management that includes biology, economics, and sociology, amongst others. There are many debates within conservation biology, and a big one is about how much to involve people, and their activities, in conservation areas versus attempting to completely exclude people from protected areas.

Two conservation conversations have explored this dichotomy in meaningful ways. First is a recent paper by Elena Bennett (Bennett 2017), who argues that strategies for environment and conservation protection needs to take a human-first approach and focus on human well-being. The second is a talk I saw from Daniel Janzen the other day. Janzen is a world-renowned ecologist and has dedicated his life to conservation in Costa Rica for the past 30 years. This debate was central to his talk about the conservation successes at the Area de Conservacion Guanacaste (ACG), where Janzen developed and implemented a conservation philosophy that included local people in the managing and research in the conservation area. Before Janzen, the Park relied on the traditional approach of excluding people to protect nature and it was failing. Janzen’s approach has been immensely successful, and the Park is now considered a conservation success story.

People can be convinced to appreciate biodiversity around
-if it provides a benefit. (photo by M. Cadotte)
Including people in nature conservation is bound to have successes. People feel more familiar and involved with nature protection, which gives them a sense of ownership. If people understand the benefits of nature, economic and otherwise, then they will be invested in its protection. It all seems so logical, but as I listened to Janzen’s talk (and read Bennett’s paper), I kept thinking: “would there be any losers under a human-first approach to conservation”. I think the answer is yes, and the reason is that we are prone to use a shifting baseline to evaluate success. Let me explain what I mean.

The human-nature story is one that is about a continual 30,000 year retreat. All of our successes -our population growth, our art, our medicine, have all come at the expense of nature. Anywhere on Earth where there are humans, there are losses. Habitat alteration and destruction, and species extinctions are the defining feature of our presence. This legacy has permanently altered the biology of our planet.

Why is this important? Because we really don’t care. We don’t miss wholly mammoths in northern Europe. We don’t miss giant sloths in California. We don’t miss black bears in downtown Toronto. We don’t miss lions in Cape Town. The definition and acceptance of nature  for most people is not influenced by what is not there, but rather the critters we are familiar with and are willing to accept. Big mammals simply have no place in human dominated landscapes and we don’t bemoan their absences.

Can human-first conservation protect jaguars?
(Photo from wikipedia)

Human-first conservation strategies work simply because we accept a less valuable system as acceptable and perhaps normal because of our shifting baselines. Would a human-first conservation strategy work in Costa Rica’s ACG if there was a huge jaguar population that was attacking livestock? Not likely.

The United States government spends billions on national parks to conserve nature (among other things), but if it was up to ranchers living near Yellowstone, for example, all the top predators will be exterminated. Hunters and ranchers in Germany are similarly up in arms (literally) over the re-appearance of wolves and lynx in restored forests within Germany’s borders. Some there consider the extermination of large predators a commendable feat of an advanced society.

The point is that we like the nature we know, and the nature that is not likely to kill us. People are most often invested, familiar, and willing to conserve nature around them, which already works for them.

Costa Rica’s ACG human-first conservation works in certain contexts. It gets people involved, it protects certain facets of nature, and it has a high likelihood of long-term success. If this is the model for a successful conservation philosophy, then we must accept that not all of nature can be protected. In all likelihood, many large mammals will go extinct in my childrens’ lifetime, regardless of how well we do conservation. So perhaps, moving forward with the human-first strategy is the best option, but a part of me hopes that there is a place for real nature in our world. The rest of me knows that there isn’t.


Bennett, E. M. 2017. Changing the agriculture and environment conversation. Nature Ecology & Evolution 1:0018.

Wednesday, November 16, 2016

The value of ecology through metaphor

The romanticized view of an untouched, pristine ecosystem is unrealistic; we now live in a world where every major ecosystem has been impacted by human activities. From pollution and deforestation, to the introduction of non-native species, our activity has influenced natural systems around the globe. At the same time, ecologists have largely focused on ‘intact’ or ‘natural’ systems in order to uncover the fundamental operations of nature. Ecological theory abounds with explanations for ecological patterns and processes. However, given that the world is increasingly human dominated and urbanized, we need a better understanding of how biodiversity and ecosystem function can be sustained in the presence of human domination. If our ecological theories provide powerful insights into ecological systems, then human dominated landscapes are where they are desperately needed to solve problems.
From the Spectator

This demand to solve problems is not unique to ecology, other scientific disciplines measure their value in terms of direct contributions to human well-being. The most obvious is human biology. Human biology has transitioned from gross morphology, to physiology, to molecular mechanisms controlling cellular function, and all of these tools provide powerful insights into how humans are put together and how our bodies function. Yet, as much as these tools are used to understand how healthy people function, human biologists often stay focussed on how to cure sick people. That is, the proximate value ascribed to human biology research is in its ability to cure disease and improve peoples’ lives. 


In Ecology, our sick patients are heavily impacted and urbanized landscapes. By understanding how natural systems function can provide insights into strategies to improve degraded ecosystems. This value of ecological science manifests itself in shifts in funding and publishing. We now have synthesis centres that focus on the human-environment interaction (e.g., SESYNC). The journals that publish papers that provide applied solutions to ecological and environmental problems (e.g., Journal of Applied Ecology, Frontiers in Ecology and the Environment, etc.) have gained in prominence over the past decade. But more can be done.


We should keep the ‘sick patient’ metaphor in the back of our minds at all times and ask how our scientific endeavours can help improve the health of ecosystems. I was once a graduate student that pursued purely theoretical tests of how ecosystems are put together, and now I am the executive editor of an applied journal. I think that ecologists should feel like they can develop solutions to environmental problems, and that their underlying science gives them a unique perspective to improving the quality of life for our sick patients. 

Wednesday, September 7, 2016

Where the wild things are: the importance of urban nature

Cities represent our ultimate domination over nature. They are landscapes that are completely modified to meet all of our needs and desires. In cities we drastically change the vegetation, reroute rivers, seal the Earth’s surface in impermeable cement, and often change the chemical composition of the air around us. For most people, this unnatural state of affairs seems completely natural. Its how we grow up.

What we don’t notice is all that is missing. The trees, the birds, and the mammals are largely absent from big cities. But not all cities are equal in this missingness. For those of us that live in cities like Toronto, Nashville, or Sydney, seeing birds and mammals is part of our normal life. In my back yard in Toronto, I am likely to see racoons, skunks, possums, red squirrels, eastern grey squirrels, chipmunks, deer mice, and a plethora of birds, and just down the road, foxes, coyotes, and deer are not uncommon. One morning I heard a ‘thud’ come from our sunroom window, and outside was a stunned red-tailed hawk (he was fine in the end). These cities are evidence that nature can persist and coexist with urban development.

However, there are other cities where nature is almost completely absent. While living in Guangzhou, China I saw just cats, dogs and rats, and barely any birds –shockingly no pigeons. Recently in while in Montpellier, France, it became obvious to Caroline and I (the two EEB & Flow contributors) that besides a small lizard species, pigeons and a few sparrows, we were not going to see any wildlife in the city. Guangzhou and Montpellier are very different cities in terms of size (16 million vs. 300 thousand), density, building height, pollution levels, etc.  But one way they are similar is that they are old. People have living and changing the landscapes in these regions for thousands of years. Of course the same could technically be said of North America and Australia, but the magnitude and intensity of human modification has no parallel in North America and Australia. Long-term intensive human activity removes other species in the long run. Is this the natural endpoint for our younger cities?

Cambridge, England. While quite beautiful, it is a typical old european city with a lot of stone.

Why we should celebrate raccoons

Toronto has a war against the raccoon. To most Torontonians, the raccoon is a plague –vermin that get into garbage cans and pull shingles off of roofs. Their density in Toronto is about 10 times higher than in wild habitats and many people in Toronto support removing them all together.

I have a different stance. We should be celebrating the raccoon. Yes raccoons cause problems; yes they carry disease; yes they damage property; yes their density is unnaturally high. But the same can be said of people (I don’t think I ever caught a flu from a raccoon). If raccoons were to recede to distant wilds and disappear from Toronto altogether, we would be no different than all those other cities where nature has completely lost. Raccoons give hope –hope that nature can flourish under the repressive and cruel dominion of urban centres. Raccoons remind us that nature has a place and can thrive in cities, and that we can share this world. They give me hope that Toronto’s destiny is not prescribed and we are not bound to the same fate as so many other cities.

I have a couple of new Chinese scientists visit my lab each year, and the differences between Toronto and say Beijing or Shanghai could not be more stark for them. To see deer, squirrels and raccoons in the city is a marvel. Every time one of these visitors comments on the wildlife in our city, I am reminded that we are really fortunate and have something that should be cherished.

Raccoon family –not an uncommon sight in Toronto (CCBYgaryjwood


Need to rethink urban nature

The problem is that Toronto, and most other cities, is continuing to grow and become more densely packed, making it more difficult for nature to endure. We need to rethink how cities grow and develop, and we need to keep a place for nature. There is no reason why new developments can't accommodate natural elements and green space –this often does not happen in most cities. Singapore is unique in this sense, new public infrastructure projects explicitly incorporate novel green space and infrastructure. I toured green sites there recently and saw a new hospital where it was impossible to tell where the park space ended and the hospital started (see picture below). There I saw patients tending gardens on the roof, nearby residents strolling through the forested courtyards, and turtles, wading birds and a large river monitor in the neighbouring pond. Also, Singapore's new large pump house infrastructure that reduces flooding in the city has a full sloping lawn on the top that is used by picnickers. In most North American cities this type of building would be grey industrial cement with little other function than to house pumps.

Singpore's Khoo Teck Puat hospital -the world's greenest hospital? 

Large old cities devoid of wildlife need not be the natural endpoint for a city.  Smart development and accommodating nature needs to be woven into the tapestry of cities. Toronto’s raccoons are great, and I wouldn’t want to live in a Toronto without them.