Tuesday, January 4, 2011

Science 2.0 - science comes of age on the Internet

by Marc Cadotte, Nicholas Mirotchnick and Caroline Tucker

The Internet is not just for lolcats and porn anymore, scientists have begun using it in constructive ways. The past few weeks’ controversy about the ability (or lack thereof) of bacteria to incorporate arsenic exemplifies how the relationship between science and the Internet is changing. If you’ve missed the debate over the recent Science paper, researchers funded by NASA’s exobiology/evolutionary biology program published experimental results suggesting that a Halomonas species could incorporate arsenic into its DNA in the absence of available phosphorus. This paper received extensive attention in the mainstream media, but also vocal criticism, which was expressed primarily through postings and comments on scientific blogs. Until recently, for scientific communication the Internet has functioned primarily as an electronic source of published journal articles. Earlier attempts to take advantage of the Internet’s potential (immediacy, accessibility, and ability to connect individuals, organizations, and ideas) in scientific discourse have been mixed (e.g. Nature Precedings versus PLoS ONE). The use of blogs as a forum for scientific debate suggests that this is changing: posters tended to be active scientists and the comments were similarly knowledgeable. In contrast to this online approach, the authors of the Science paper stated that they would only respond to peer-reviewed critiques and would not engage in discussions on the blogosphere.

The story of the arsenic-utilizing bacteria highlights an emergent tension in the transition to internet-based scientific discourse. Traditional communication in science has been primarily unidirectional, from the authors of a study to the readership of a journal. Any discourse transpired on the pages of a journal, regulated by editorial and peer review. This gatekeeping meant that this discourse was technically sound and kept personal grudges and tangential discussions to a minimum. This also meant, however, that only a few voices were heard, the discussion was slow (occurring over months) and only happened for one back and forth (journals will not devote precious page space to on-going discussions and debates).

This method of discourse is changing. Journals have experimented with online discussion or commenting features on their websites. Methods in Ecology and Evolution, for example, has a correspondence page with discussion threads for each paper they publish, and PloS ONE allows for comments to be posted to every paper they publish. While, in concept, these are positive developments for scientific communication, commenting features are seldom, if ever, used. The main obstacle to their success is that they are only available on the publishers’ websites, but scientists access articles in many different ways, from database searches to library links. Few scientists actually go to individual journal websites to access papers. This is not to say that there are not discussions about scientific papers occurring online. As highlighted by the arsenic bacterial episode, blogs are an important avenue for discussing and disseminating new ideas in science. Blogs may not, however, actually foster conversations very well. One person or a few people usually run them and there is little discussion among blogs (a comment on a blog post at blog X will not be part of the discussion of the same story at blog Y). Rather, the greatest potential to foster discourse is through virtual networks where people are linked together either through friendships or professional self-identification (e.g., as fisheries biologists), with Google Reader being a particularly powerful communication tool.

It’s exciting to think about what the future of science will look like, given the changes that we’ve already started to see. The major upside of new channels of communication is that they give us the potential to quickly reach thousands of readers, instead of the handful that usually read any given journal article. They also let us communicate in both directions, and in real time. The pitfall, of course, is that they’re free-for-alls; anyone can blog about science.

But here’s what’s unexpected: these free-for-alls have been amazingly reliable at filtering out the bad and promoting the good. Inaccuracies are pulled from Wikipedia faster than anyone had predicted, the social news site Reddit is “astonishingly” altruistic, with users eliminating offensive or erroneous comments from the site and promoting other users’ questions and problems, and the reputations of blogs are shattered if their content becomes unreliable. Social networking has revolutionized the way we consume news, with sites like Facebook and Twitter launching the best articles into viral webspace. The open-access world has evolved self-regulating mechanisms that work surprisingly well so far and if these media are to continue to grow, we will have to ensure that these mechanisms remain built-in.

Seems like an easy task, right? Apparently not. For some reason, academics are slow and conservative when it comes to adopting new media. A letter to Nature two weeks ago scolded scientists for not contributing their share to Wikipedia pages. Various facebooks for academics, like Mendeley and ResearchGATE have emerged, but last week, another Nature article complained that researchers aren’t jumping on the bandwagon. These sites are potential collaborative goldmines, but we seem to be incapable mastering what tweens can do with two thumbs.

It’s not so hard to imagine a world where anyone with a broadband connection can contribute creative ideas to science, the good ideas get automatically filtered to the top and the information is all free to anyone. In this world, children count ants (or bees!) in their backyards and upload their data to global networks. Revolutionary discoveries are published instantly on blogs and thousands of scientists get to decide if they’re valid. Every gene ever sequenced and every tree height ever measured can be readily downloaded in an Excel (or OpenOffice) spreadsheet. In this world, the report on our little arsenophilic friends might never have been published in Science, because instead of being reviewed by two referees, the thousands of readers on the blogosphere would have filtered it out, if was in fact porous.

Academics should be the first, not the last, to adopt new communication tools. We are no longer limited by the postal service, email or PDFs; the web has gone 2.0 and we should follow suit. So go forth, young researchers, and blog, edit and share. And then go tweet about it all so your eight year-old kid knows how hip you are.

Friday, December 10, 2010

Biodiversity and ecosystem functioning – without fungi?

Different subfields of ecology have a propensity to remain remarkably isolated – researchers in aquatic systems independently develop hypotheses that already exist in some form in other systems, and vice versa. Population ecology and community ecology, despite their obvious relevance to each other, are rarely integrated. There is a tendency – resulting from limits on our time, experience, and possibly imagination – to stay within whatever box we’ve defined for ourselves.

Historically, it seems that biodiversity and ecosystem functioning has lost sight of the progress made in classical ecology in understanding the mechanisms behind species coexistence (and all the functional implications that follow). Studies of ecosystem functioning often vaguely reference concepts such as “niche partitioning”, which would hardly be explicit enough for most papers on coexistence. Fortunately, there are periodically attempts to unifying ecological knowledge.


One of the most important contributions to understanding coexistence is Chesson’s (2000) framework of equalizing and stabilizing effects. Unlike previous approaches to species interactions, which tended to reference these vaguely-defined “niche differences”, Chesson proposed that species interactions depended on both fitness differences (differences in absolute growth rates after niche differences are controlled for) and niche differences (ecological differences between species which cause intraspecific competition to exceed interspecific competition). He also suggested rigorous methods to quantify these concepts. This framework has been applied both to the obvious questions of species coexistence and diversity maintenance, as well as predator-prey relationships (2008) and the phylogenetic structure of communities (2010).

In a recent paper, Ian Carroll et al. apply this framework to the search for the mechanisms behind biodiversity and ecosystem functioning. They point out that the questions in studies of ecosystem functioning are directly analogous to Chesson’s concepts – selection effects result from fitness or competitive differences between species, while complementarity relates to the partitioning of resources, or niche differences between species. The added benefit is that Chesson has provided clear definitions for these concepts.

While this may not be world-altering, it’s encouraging. Anytime different areas of ecology intersect, both benefit. Of course there are difficulties – no doubt the question of how to measure niche differences and fitness differences will be contentious (as attempts to translate ecological theory into ecological methodology often are) - but the possibility that a few general ecological concepts explain diverse observations is worth pursuing.

Thursday, November 18, 2010

Biodiversity and ecosystem functioning - only with fungi

Once again scientists have come to an age-old conclusion: fungus is behind all of life’s great mysteries. It's responsible for curing strep throat, delicious veggie burgers, that unique musk emanating from your gym bag, the colour-morphing walls at last night’s party and now, biodiversity and ecosystem functioning.

The world of biodiversity and ecosystem functioning (BEF), like many other high-profile disciplines of science, has often been bogged down by controversy. In such situations, we often spend a disproportionate amount of time focusing on the controversy instead of actually advancing the science itself (sound familiar?)

There have been several posts about BEF on this blog in the last few months, but briefly and oversimplified, here's how it works. Ecosystem functions are things like productivity, nutrient cycling and decomposition. Ecosystems that contain many species produce higher levels of these functions than monocultures do. The controversy here surrounds the cause of this phenomenon. In the 1990s, researchers originally disagreed over whether the relationship they observed was due to complementarity (different species partitioning resources) or selection effects (the higher chance of a really productive species being included in a community with many species). The question was largely settled a few years ago; selection effects do exist, but most of the relationship is driven by complementarity. Nonetheless, many biologists who are only tangentially familiar with this area of research are unaware of the consensus and continue to believe that the issue remains unresolved. Some still dismiss the whole field of BEF because of selection effects. I guess people just love a controversy.

The result of all this is that the ecologists studying these relationships have had to spend an undue amount of time parsing their results into selection and complementarity and discussing the two phenomena. They have even come to refer to these as the “mechanisms” behind BEF. And this is where we start to have a problem. Selection and complementarity are not mechanisms - they are symptoms of mechanisms. They do not tell us what is actually causing the positive effect that biodiversity has on ecosystem functioning, only what the shape of the relationship is. In fact, very few studies have actually looked for true mechanisms that explain the effects that we have repeatedly observed.

But this week I read a new paper in Ecology Letters that actually did find a mechanism, and it wasn’t one that we expected. John Maron and his coauthors at the universities of Montana and British Columbia found that belowground fungi were causing plant productivity to increase with diversity.

In an impressively complete experiment, Maron et al. put together a classic BEF setup of many plots containing varying levels of plant diversity and then measured plant biomass. But this time they added a twist; they applied fungicide to the soil in some of these plots. The result was that in the absence of fungi, the common BEF relationship disappeared. The low diversity plots became much more productive, while productivity at high diversity only increased slightly. The authors explained their results by the fact that fungi can be both species-specific and density-dependent, so as plant diversity increases, the fungi’s negative impact on plant productivity diminishes. And for good measure, they of course also ruled out a significant selection effect in their results.

So what does this all mean? Well for one thing, it means that we now have at least one good mechanistic explanation for that black box that we’ve been calling “complementarity” for years. But perhaps more importantly, it means that the link between biodiversity and ecosystem functioning is now more real than ever. If plant species go extinct, the remaining ones will be more susceptible to fungal pathogens and productivity will decline. So let’s try to not let that happen, k?

Maron, J. L., Marler, M., Klironomos, J. N. and Cleveland, C. C. , Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, DOI: 10.1111/j.1461-0248.2010.01547.x

Friday, November 5, 2010

The effects of forest fragmentation after 30 years

ResearchBlogging.orgLarge-scale alteration of nature landscapes has had profound implications for biological diversity. The single biggest contributor to the current extinction crisis is the wholesale destruction of habitats. As habitats are destroyed, formerly contiguous landscapes become fragmented into smaller patches. But what exactly the effects of fragmentation are, independent of habitat destruction, is not always so clear (e.g., Simberloff 2000. What do we really know about fragmentation? Texas Journal of Science 52: S5-S22).

The biological dynamics of forest fragments project (BDFFP) in the Amazon, was started in 1979 and created 11 tropical forest patches ranging from 1 to 100 ha in size. The dynamics of these fragments have been consistently monitored and compared to plots in intact forest. This experiment represents the world's largest, longest-running fragmentation experiment and has told us more about fragmentation then any other study system. In a recent publication by William Laurance and many colleagues involved in this project, they summarize 30 years of data and show how fragmentation affects ecological patterns and processes.
Fragments turn out to be very dynamic and defined by change, compared to interior plots. They have higher tree mortality and are much more susceptible to weather events such as storms or droughts. The effects are especially pronounced at the edges of these fragments. The edge community face high mortality but also have higher tree density. Faunal communities in fragments and especially near edges are depauperate.

One interesting aspect highlighted by this 30 years of research is that the edge effects are strongly influenced by what is happening around the fragments. The fragment edge effects are sensitive to the composition of the inter-patch matrix, giving managers the opportunity to influence fragment diversity and health by managing the matrix in ways that support fragments. Because of over 30 years of perseverance of the researchers involved, this experiment give scientists, managers and policy-makers information to help manage an increasingly fragmented world and to find ways to reduce to negative impacts of habitat destruction.

Laurance, W., Camargo, J., Luizão, R., Laurance, S., Pimm, S., Bruna, E., Stouffer, P., Bruce Williamson, G., Benítez-Malvido, J., & Vasconcelos, H. (2010). The fate of Amazonian forest fragments: A 32-year investigation Biological Conservation DOI: 10.1016/j.biocon.2010.09.021

Wednesday, November 3, 2010

Carnival of Evolution!

The 29th installment of Carnival of Evolution is here, hosted by Byte Size Biology. Check out recent evolutionary musings and rants from around the blogoshpere.

Sunday, October 17, 2010

Grassland diversity increases stability across multiple functions

ResearchBlogging.orgAs ecological systems are altered with cascading changes in diversity, the oft-asked question is: does diversity matter for ecosystem function? This question has been tested a multitude of times, with the results often supporting the idea that more diverse assemblages provide greater functioning (such as productivity, nutrient cycling, supporting greater pollinator abundance, etc.). Besides greater functioning, scientists have hypothesized that more diverse systems are inherently more stable. That is, the functions communities provide remain more constant over time compared with less diverse systems, which may be less reliable.

While the relationship between diversity and stability has been tested for some functions, Proulx and colleagues examined the stability of 42 variables over 7 years across 82 experimental plots planted with either 1, 2, 4, 8, 16 or 60 plant species in Jena, Germany. They examined patterns of variation (and covariation) in the functions and found that many show lower variation over time in plots with more plant species. Greater stability was found at many different trophic levels including plant biomass production, the abundance and diversity of invertebrates and the abundance of parasitic wasps -which indicate more complex food webs. They also found greater stability in gas flux, such as carbon dioxide. Despite the greater stability in these measures of above-ground functions, below ground processes, such as earthworm abundance and soil nutrients, were not less variable in high diversity plots.

How ecosystems function is of great concern; these results show that more diverse plant communities function more stably and reliably than less diverse ones. The next step for this type of research should be to address what kind of diversity matters. A greater number of species means more different kinds of species, with differing traits and functions. What aspect of such functional differences determine stability of ecosystem function?

This is an exciting paper that continues to highlight the need to understand how community diversity drives ecosystem function.

Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S., Baade, J., Barnard, R., Buchmann, N., Buscot, F., Eisenhauer, N., Fischer, M., Gleixner, G., Halle, S., Hildebrandt, A., Kowalski, E., Kuu, A., Lange, M., Milcu, A., Niklaus, P., Oelmann, Y., Rosenkranz, S., Sabais, A., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Schulze, E., Schumacher, J., Schwichtenberg, G., Soussana, J., Temperton, V., Weisser, W., Wilcke, W., & Schmid, B. (2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands PLoS ONE, 5 (10) DOI: 10.1371/journal.pone.0013382

Saturday, September 4, 2010

Protecting biodiversity one task at a time: have your say

The fact that the Earth is in the midst of a biodiversity crisis has been repeatedly acknowledged by world governments. The greatest pronouncement was is 2002 with the '2010 Biodiversity Target' where many of the largest economies signed a pledge to halt biodiversity loss by 2010. Yet it is now 2010 and species are continuing to go extinct and habitats are continuing to be destroyed or degraded. But it shouldn't be a surprise that non-binding governmental proclamations fail to produce substantial results. Yet the reality is that we need to do something, inaction only worsens the legacy of biological deficit for future generations.

Maybe the best way forward is not more international governmental summits, but rather focusing on small scale, achievable short term goal. Guillaume Chapron started the Biodiversity 100 campaign, hosted by the Guardian (see story here), which seeks out public and professional input into the 100 immediate and achievable projects or ideas that will help protect biodiversity. The idea is to be able to go to governments and international agencies with this list and get them to make specific pledges to carry out these tasks.

There is till time to participate! If you have an idea of an action to protect biodiversity, fill out the web form. There are already a plethora of great suggestions, from protecting specific habitats to stemming population growth. This list is important because it includes the voices of the international public citizenry and that of scientists. More than that though, there will be a concrete list of tasks (ranging from very local to very global) that citizen groups can use to sustain pressure on governments.

Tuesday, July 27, 2010

Enhanced biodiversity-ecosystem function relationships in polluted systems

*note: this text was adapted from an Editor's Choice I wrote for the Journal of Applied Ecology.

ResearchBlogging.orgIn this era of species loss and habitat degradation, understanding the link between biodiversity and functioning of species assemblages is a critically important area of research. Two decades of research has shown that communities with more species or functional types results in higher levels of ecosystem functioning, such as nutrient processing rates, carbon sequestration and productivity, among others. This research has typically used controlled experiments that standardize environmental influences and manipulate species diversity. However, a number of people have hypothesized that biodiversity may be even more important for the maintenance of ecosystem functioning during times of environmental stress or change rather than under stable, controlled conditions. It is during these times of environmental change that preserving ecological function is most important, as changes in function can have cascading effects on other trophic levels, compounding environmental stress. Therefore, explicitly testing how biodiversity affects function under environmental stress can help to inform management decisions.

Image from Wikimedia commons

In a recent paper in the Journal of Applied Ecology, Li and colleagues examine how algal biodiversity influences productivity in microcosms with differing cadmium concentrations. Cadmium (Cd) is a heavy metal used in a number of products and industrial processes, but it is toxic and Cd pollution is a concern for human populations and biological systems, especially aquatic communities. This is especially true in nations currently undergoing massive industrial expansion. In response to concerns about Cd pollution effects on aquatic productivity, Li et al. used algal assemblages from single species monocultures to eight species polycultures grown under a Cd-free control and two concentrations of Cd, and measured algal biomass.

Their results revealed that there was only a weak biodiversity-biomass relationship in the Cd-free teatment, which the authors ascribed to negative interactions offsetting positive niche partitioning. In particular, those species that were most productive in their monocultures were the most suppressed in polycultures. However, in microcosms with Cd present there were positive relationships between diversity and biomass. They attribute this to a reduction in the strength of competitive interactions and the opportunity for highly productive species to persist in the communities.

While a plethora of experiments generally find increased ecosystem function with greater diversity, Li et al.’s research indicates that the effect of biodiversity on function may be even more important in polluted systems. If this result can be duplicated in other systems, then this gives added pressure for management strategies to maintain maximal diversity as insurance against an uncertain future.

Li, J., Duan, H., Li, S., Kuang, J., Zeng, Y., & Shu, W. (2010). Cadmium pollution triggers a positive biodiversity-productivity relationship: evidence from a laboratory microcosm experiment Journal of Applied Ecology, 47 (4), 890-898 DOI: 10.1111/j.1365-2664.2010.01818.x

Thursday, July 22, 2010

Reinterpreting phylogenetic patterns in communities

Examining the phylogenetic structure of a community in order to understand patterns of community assembly has become an increasingly popular approach. A quick web search of “community”, “phylogenetics”, and “ecology” finds several hundred papers, most written in the last ten years.

Eco-phylogeneticists examine how patterns of evolutionary relatedness within communities may reflect the processes structuring those communities. In particular, a commonly tested hypothesis is the competition-relatedness hypothesis, which suggests that more closely-related species having more similar niches and therefore stronger competitive interactions, making coexistence between them less likely. As a result, if competition is important, communities may exhibit phylogenetic overdispersion, with species being less related on average than if drawn randomly from the regional species pool. The contrasting pattern, phylogenetic clustering, where species tend to be more closely related than expected, is often interpreted as being the result of strong environmental filtering, such that only a closely related group of species, best adapted to that environment, surviving in the community.

Evidence for the competition-relatedness hypothesis has been mixed, and since most tests of this hypothesis focus on patterns in observed data, conclusions about the underlying mechanism driving community phylogenetic patterns are rarely testable, and yet widely made.

In Mayfield and Levine (2010, Ecology Letters), the authors critique the current ecological justification for the competition-relatedness hypothesis, noting that it does not agree with a more current view of the processes driving species coexistence. As established by Chesson (2000, Annual Review of Ecology and Systematics), coexistence can involve both stabilizing forces (niche differences between species), and equalizing forces (fitness differences between species). In a simplistic example, plants using different soil types (niche differences) may coexist, while plants with similar high growth rates may exclude those species with lower growth rates (fitness differences). The final community should reflect the interplay of both these processes.

The implication of this view of species coexistence is that there is no preconceived phylogenetic pattern which should reflect competition: if species with the highest heights are competitively superior and exclude other species (coexistence driven by fitness differences), and height is a phylogenetically conserved trait, the community will appear to be phylogenetically clustered. Traditionally, a clustered pattern would not be considered to indicate the effects of competition. In fact, Mayfield and Levine show that the expected phylogenetic pattern depends entirely on whether niche and/or fitness differences are important and/or related to phylogenetic distance.

This suggest that conclusions in past studies may need to be reinterpreted. It also adds to the list of assumptions about evolutionary relatedness and ecological function which need to be tested: for example, how do niche and fitness differences tend to change through time? Do they tend to be conserved among closely related species? Does one or the other tend to dominate as a driver of coexistence in different systems? If nothing else, we need to be careful about making generalizations which don’t account for the differing evolutionary history, geographical location, and ecological setting that communities experience, when interpreting observed patterns in those communities.