Friday, November 30, 2018

Un-BEE-lievable: The Buzz on Native Bee Conservation in Canada

Guest post by University of Toronto-Scarborough MEnvSc Candidate Rachel Siblock

Unless you’ve been living under a rock (much like native mining bees in Canada), you’ve probably seen the numerous campaigns to “Save the Bees”. Bee species across the globe are in decline. There are many factors that contribute to this decline, such as pesticide use, colony collapse, disease, habitat loss, and climate change1. Many of these factors interact with one another, exacerbating the consequences and impacts. Conservation efforts are being implemented to try to stop the loss of these pollinators, and the valuable services they provide to humans. Canada is no exception. There are local, provincial, and national policies and programs operating and currently being developed in order to reduce the impacts of these threats. In the past few years, programs like The Bee Cause, Bees Matter, Feed the Bees, and others have implemented programs and recommendations in order to increase the bee populations in Canada. Honey Nut Cheerios has even campaigned to get the public engaged and involved in the conservation of bees. These programs, however, all have one common issue: they focus their efforts on Honey Bees. 


An example of a campaign by Honey Nut Cheerios, focusing on honey bees. 
There are no native honey bees in Canada. The most well-known bee in Canada was not even present in the country until it was introduced from Europe in the 1600s2. The European Honey Bee was intentionally introduced to Canada for honey production, and since has increased in number dramatically, both in farmed and wild colonies. Honey bees have large colonies, allowing them to be easily managed and farmed. They also pollinate crops and produce honey, which may make them seem more economically valuable than their native, non-honey-producing counterparts. However, there have been unexpected impacts of the introduction of the European Honey Bee on native bee species in Canada.
            There are over 800 native bee species in Canada. While there are many different types of bees in Canada, the best understood group of native bees are bumble bees. Bumble bees have the ability to buzz pollinate, which allows them to obtain pollen from plants with pollen that is difficult to extract. Many of these plants are economically valuable, such as kiwi and blueberry crops. This, along with general pollination, makes managed populations of bumble bees worth several billion dollars annually3. Bumble bees naturally have low genetic diversity and can be subject to inbreeding depression, leading to declining populations and making the some species more vulnerable to extinction4. Threats can then interact with these low population levels, and intensify population loss. 
A male Rusty-patched Bumble Bee, one of Canada’s native bee species. It is currently listed as endangered in Canada.
Aside from facing the same threats as honey bees, native bumble bees are also threatened by the very presence of honey bees. Competition for resources with honey bees is a major threat to native bumble bees. A study performed in the United Kingdom found that bumble bees at sites with high honey bee density were significantly smaller in body size when compared to their relatives at sites with low honey bee density5. An additional study discovered a reduction of native bumble bee colony success when colonies were experimentally exposed to honey bees6. Honey bees generally produce larger colony sizes which can store a larger amount of resources than bumble bees. They also have the ability to communicate with one another about valuable floral resource locations7. Honey bees have a larger foraging range than native bumble bees, and have an increased ability to forage on introduced plant species7. These adaptations allow honey bees to outcompete native bumble bees, and commandeer sparse resources in the area.
            Threats from honey bees do not just end at competition; pathogens and parasites specifically adapted to honey bees have been shown to have the ability to spread to wild bumble bee populations. Managed honey bees are known to carry higher than natural levels of pathogens8, which can be transmitted to wild bumble bee populations when the bees interact. In particular, two pathogens endemic to honey bees, C. bombi and N. bombi, are wreaking havoc on bumble bee populations. While these pathogens do not have lethal effects, their sublethal effects can be devastating to colonies. These pathogens cause reduced pollen loads, a decline in flowers visited per minute, slower growth rates of colonies, decreased queen reproductive rates, shortened life spans and diminished colony growth8. With small populations already, entire bumble bee colonies can be wiped out by these pathogens. Honey bee parasites, such as the Small Hive Beetle, have also been shown to be able to spread to bumble bee colonies, where they consume the wax, pollen, and nectar stores of hives8. While honey bees have co-evolved with these parasites and pathogens for eons, bumble bees have not had the time to adapt to these threats, making them much more vulnerable to these hazards. 
Small Hive Beetle infestation in a honey bee colony. 
But why do we care about losing native bees? The same concerns about the loss of honey bees applies to native bees. Native bee species pollinate crops and flowers, which we depend on for food. It is estimated that about one in three bites of food we consume can be traced back directly to pollination by bees and other pollinators. However, native bees have been found to be more effective pollinators than honey bees. Some plant species in Canada rely solely on native bees for their pollination. With the loss of native bees, these plants will also become endangered, along with many other food crops requiring pollination. Additionally, there is a severe lack of research into native bees. Research tends to focus on honey bee populations, resulting in much more knowledge of honey bee behaviours, adaptations, actions, and responses to stressors. The truth is, we don’t know much about native bee species in Canada. We have no idea what the consequences of the loss of these species will be. However, this does not excuse us from protecting these bees. If anything, this lack of knowledge should increase our urge to protect them, so we have the opportunity to learn about them in the future.
            The native bee species in Canada share little life history traits with the European Honey Bee8, making many conservation efforts that focus on honey bees unsuccessful. Focusing conservation efforts on one species may not address the specific needs of native bees. In addition, by focusing on improving honey bee populations, there will be increased stress on native bees, which will lead to a decline in their populations. If we continue with these conservation strategies, we may threaten native species further.
            An increase in honey bee populations will increase parasite and pathogen levels in native bees, and also increase the competition between honey bees and native bees. So what can you do to focus conservation efforts on native Canadian bees? For starters, avoid the use of pesticides, which will decrease already low populations8. Improve your knowledge of bee species, and report invasive or introduced species in areas used by native bee species. Plant a wide variety of native plants with high pollen and nectar concentrations to ensure newly emerging bees have the resources they need to survive. And finally, avoid tilling, mowing, or burning in areas where native bee species, particularly ground dwelling species, are known to live. With increased knowledge of native bee needs, and species specific conservation efforts, it is hoped that native bee species will begin to rebound. Let’s BEE positive!

BEE Informed – To get involved with native bee conservation check out these links:


BEE-bliography:
    1.     Pettis, J.S., and K.S. Delaplane. 2010. Coordinated responses to honey bee decline in the USA. Adipologie 41:256-263.
    2.     van Engelsdorp, D., and M.D. Meixner. 2010. A historical review of managed honey bee populations in Europe and the United Sates and the factors that may affect them. Journal of Invertebrate Pathology 103:80-95.    
    3.     James, R., and T.L. Pitts-Singer. 2008. Bee Pollination in Agricultural Ecosystems. Oxford University Press, USA.
    4.     Zayed, A., and L. Packer. 2005. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proceedings of the National Academy of Sciences of the United States of America 102:10742-10746.
    5.     Goulson, D., and K. Sparrow. 2009. Evidence for competition between honey bees and bumble bees: Effects on bumble bee worker size. Journal of Insect Conservation 13:177-181.
    6.     Thomson, D. 2004. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458-470.
    7.     Goulson, D. 2003. Effects of introduced bees on native ecosystems. Annual Review of Ecology, Evolution, and Systematics 34:1-26.
    8.     Colla, S.R. 2016. Status, threats and conservation recommendations for wild bumble bees (Bombus spp.) in Ontario, Canada: a review for policymakers and practitioners. Natural Areas Journal 36:412-426.

Image Sources:
  1. https://bringbackthebees.ca
  2. https://inaturalist.com
  3. http://beeaware.org.au/archive-pest/small-hive-beetle/#ad-image-0

Thursday, November 22, 2018

Floral diversity increases bee abundance and diversity

*This is a guest post by Aswini Kuruparan- student in my 'Causes and Consequences of Biodiversity' course.
Bees are amongst the most crucial pollinators in the world and are critical for the success of our food crops. In fact, bees and other pollinators are responsible for the pollination of 87% of all flowering plant species (Lerman, 2018). However, due to the changes that humans have imposed on the environment through land use and agricultural practices, we see declines in both the numbers and diversity of bees (Nicholson, 2017). Recent evidence has been compiled to show that the composition of agricultural fields, tillage and lawn mowing frequency can significantly affect bee population size and diversity by directly affecting floral diversity. 
Agricultural fields can see more bee abundances and diversity with more floral diversity
The role of bees in the pollination of our food crops is essential to the success of global food production and feeding people around the world (Photo M. Cadotte).

Studies have shown that increasing floral diversity in agriculture can increase the size and diversity of bee populations attracted to those fields. In fact, one experiment looked at the correlation between floral diversity and population growth in stingless social bees (Kaluza, 2018). Their results indicate a positive correlation between floral diversity and bee population growth. They attribute this positive correlation with the continuous food supply available in florally diverse environments. In monocultures, all plants bloom around the same time period thus providing a narrow time interval in which bees would have sufficient food for population growth. A more diverse agricultural system would be accompanied by a larger range of blooming periods thus providing the food needed for bee populations to grow. Another experiment conducted in the vineyards of Austria came to a similar conclusion. This experiment also found that forage availability is the most significant factor to affect species richness in wild bees (Kratschmer, 2018). These findings indicate that we can promote bee diversity through diversifying the variety of floral plants in and around agricultural fields.

Another factor that indirectly affects bee population sizes and diversity is human activity in the form of soil tillage. In the study above conducted on the Austrian vineyards, the experimenters also compared the effects of no-tillage to alternating tillage and found that alternating tillage displayed slightly increased wild bee abundance and diversity relative to a no-tillage environment (Kratschmer, 2018). In this experiment no tillage was defined as a vineyard that had not undergone tillage in 5 or more years and alternating tillage was defined as a vineyard where every other row was tilled 1-3 times a year. The reasoning behind why more diversity and numbers of bees were found in alternating tillage sites was because those sites displayed higher forage availability and increased flowering plant species richness in comparison to untilled soils. Although the study found that directly increasing floral diversity had a higher impact on bee diversity, it should not be overlooked that soil tillage can also increase bee diversity and that these findings can open future research into the impacts that other steps in agriculture have on bee diversity.

Outside of agricultural practices, how often homeowners mow their lawns also affects bee biodiversity and numbers by affecting floral diversity. A study put this to the test by mowing lawns either once, twice or three times a week (Lerman, 2018). Their study revealed that mowing lawns less frequently led to increased bee biodiversity and abundance. They observed that lawns that were mowed every 3 weeks had 2.5 times more flowers than the ones mowed every 1 or 2 weeks thus providing more vital resources to bees. They suggest that homeowners minimize the frequency at which they mow their lawns to benefit bee conservation efforts by allowing for the growth of more flowers on their lawn. This shows that everyday people outside the agricultural industry can also help conserve bee diversity.
Homeowners can help increase bee biodiversity by decreasing their lawn mowing habits

Recently, Walmart has filed for a patent on autonomous robotic bees as a solution to the dwindling bee population, but this approach is not as feasible as preserving current bee diversity and making changes to promote their population growth (Potts, 2018). The economic cost of manufacturing and running these robotic bees to sustain our global food crops would be hundreds of billions of dollars. Comparatively, the pollination services by bees and other insects that are free of cost have a monetary value of over 200 million Canadian dollars (Kratschmer, 2018). It is more financially feasible to fund efforts to promote bee diversity through diversifying our agricultural systems than to build and operate these robotic bees. Moreover, robotic bees would also not be able to sufficiently capture the diverse traits possessed by various bee species to efficiently pollinate specific types of flowers. The time and resources needed to fine-tune traits which have already been perfected over years of natural selection in real bees into robots would be put to better use towards conserving and growing our bee populations.

Although it is important to acknowledge that our actions are partly to blame for the decline in bee diversity over the years, it is also important to realize that we can make changes to enhance bee diversity from here on. These studies have shown that bee diversity can be improved by increasing floral diversity through diversifying the vegetation in and around our crops, coupled with homeowners reducing the number of times they mow their lawns and further investigating how various steps in agriculture like tillage can affect bee diversity. With this in mind, it is critical that future funding is put towards conserving bee diversity rather than towards replacing them with robotic bees.

References

Kaluza, B. F. (2018). Social bees are fitter in more biodiverse environments. Scientific Reports, 8. doi:https://doi.org/10.1038/s41598-018-30126-0

Kratschmer, S. (2018). Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards? Agriculture, Ecosystems & Environment, 266, 142. doi:10.1016/j.agee.2018.07.018

Lerman, S. B. (2018). To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biological Conservation, 221, 160. doi:10.1016/j.biocon.2018.01.025

Nicholson, C. C. (2017). Farm and landscape factors interact to affect the supply of pollination services. Agriculture, Ecosystems & Environment, 250, 113. doi:10.1016/j.agee.2017.08.030

Potts, S. G. (2018). Robotic bees for crop pollination: Why drones cannot replace biodiversity. Science of the Total Environment, 642, 665-667. doi:10.1016/j.scitotenv.2018.06.114


Wednesday, November 21, 2018

Tea Time with Amazigh People

Guest post by University of Toronto-Scarborough MEnvSc Candidate Erin Jankovich



 “How do they survive?” This is the question I kept asking myself over and over as I sat sipping my mint tea on the clay floor of an Amazigh cave in the Moroccan mountains. Their faces, hands, tea-kettle and even my cup were layered with dirt and soot. Outside, prevailing winds dusted the lonely peaks of the High Atlas with orange silt. I never expected to stumble across an indigenous settlement when I set out on my hike that day, let alone be invited for tea. This was by no means a fancy tea party, but it certainly was a memorable one.

Women plucked leaves from dry aromatic plants and a man filled a kettle for more tea. A toddler sat beside me and gestured to trade his clay ball for my Nikon. I felt like a fly on the wall in a National Geographic documentary.

I was on to my third cup of tea when a young man broke the silence. “Hello, do you speak English”, I heard from behind me. Dressed in traditional Amazigh clothes, this young man carrying a notepad and pen excitedly sat down beside me. He was a university student from Japan who had been living with this Amazigh family for four months to learn about their culture. Perfect! Maybe he could enlighten me as to how these people sustain their lives on this rugged mountain top - surely there was more to it than mint tea.

Mint tea, a traditional Moroccan drink and symbol of hospitality. Photography: Erin Jankovich

The young man pointed out across the valley and said “see”. For a while, all I saw was an expanse of orange rock but eventually like a stereogram the landscape came to life. Those little black dots were goats, dozens of goats! He walked me to the trailhead and pointed at the pale green tufts across the landscape. Mint, rosemary, sage, thyme, and verbena – these aromatic plants were right beneath my nose. This dusty landscape wasn’t so dead after all. He explained that the Amazigh people have extensive knowledge of the medicinal properties of hundreds of plants that grow in the High Atlas, and women will take several hour journeys to sell herbs in the valley markets. I wanted to learn more, but I was reminded of the long trek back to Tinerhir. I said goodbye, and thanked them all for such generous hospitality.

Afternoon tea with Amazigh family. Photography: Erin Jankovich
Morocco is dominated by a mountainous interior, bordered with rich coastal plains to the west and Sahara desert to the east. Since coming home from my trip, I have learned that this unique geography falls within the Mediterranean basin, a global biodiversity hotspot teeming with endemic flora and fauna found nowhere else on the planet (Rankou et al. 2013). Morocco alone has 879 endemic plants, the majority of which are restricted to the High Atlas region (Rankou et al., 2013).

The rich biodiversity of the High Atlas has been known to the Amazigh people for thousands of years, but only recently have researchers and scientists begun to draw their attention to this unique area. In 2015, scientists used IUCN Red List criteria to assess the status of endemic Moroccan flora and determined that many species are at risk of extinction due to climate change and habitat degradation (Rankou et al., 2015). These scientists emphasized that mountainous regions such as the High Atlas are especially sensitive to changes in climate and should be a top priority for conservationists, but so far very little research has gone into understanding the vegetation dynamics of this region.

Fresh and dry plants used for medicinal purposes found in traditional markets (image from Bouiamrine, 2017).
Many plant species picked by the Amazigh are highly toxic and dangerous to humans if not used appropriately (Mouhajir et al., 2001). Anecdotal evidence through surveys and interviews have revealed that the Amazigh people, specifically senior women, are experts in distinguishing between medicinal herbs and continue to pass on this traditional knowledge from one generation to the next (Bouiamrine, 2017). Many Moroccans still rely on traditional medicine to maintain good health thus conservation of these endemic herbs is critical for both the lives of the Amazigh and Moroccan market economy (Bouiamrine, 2017).

An Amazigh woman journeys across rugged terrain to sell herbs in modern markets. Photography: Erin Jankovich
I know better now that not all hotspots of biodiversity look like lush tropical jungles, but what they do have in common is an abundance of unique species that are threatened with extinction. Internationally the Mediterranean Basin has been recognized as providing significant ecosystem function and I was pleased to find that the Moroccan government has set national targets to preserve biodiversity and inventory traditional knowledge by 2020 (CBD, 2011).

Who better than the indigenous people of the High Atlas to help us understand the historical distribution of endemic plants and potential range shifts induced by climate change? Through sensitive and purposeful strategies for interaction with the Amazigh people—like the young student sharing a tea in the mountain—we may find that complimenting science with traditional ecological knowledge is the key to saving these unique landscapes.

References
Bouiamrine, E.H., Bachiri, L., Ibijbijen, J., & Nassiri, L. (2017). Use of medicinal plants in Middle Atlas of Morocco: potential health risks and indigenous knowledge in a Berber community. Journal of Medicinal Plant Studies, 5(2), 388-342.
Convention on Biological Diversity (2011). Electronic source. Retrieved from: https://www.cbd.int/countries/targets/?country=ma
Mouhajir, F., Hudson, J.B., Rejdali, M., & Towers, G.H.N. (2001). Multiple antiviral of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical Biology, 39(5), 364-374.
Rankou, H., Culham, A., Jury, S.L., & Christenhusz M.J.M. (2013). The endemic flora of Morocco. Phytotaxa, 78 (1), 1-69.
Rankou, H., Culham, A. ,Taleb, M.S., Ouhammou, A., Martin, G., & Jury, S.L. (2015). Conservation assessments and Red Listing of the endemic Moroccan flora (monocotyledons). Botanical Journal of the Linnean Society, 177, 507-575.

Sunday, November 11, 2018

Florida’s coastal nightmare

*This is a guest post by Katherine Datuin- student in my 'Causes & Consequences of Biodiversity' course. 

Imagine going on vacation to beautiful, warm Florida just to find entire beaches strewn with the rotting remains of hundreds of fish, sea turtles and manatees. This is unfortunately not a nightmare, but a current reality for the residents of southwestern Florida, and it has been this way for almost a year now. What causing all this? This little guy. 

Figure 1. Kareina brevis living cell. Photo modified from Florida Fish & Wildlife Conservation Commission.
These events were brought to my attention through a recent article published by Vox news highlighting the consequences of such large and long-lasting harmful algal blooms, specifically the “Red Tide” in southwestern Florida (Resnick B. 2018). Kareina brevis, the algal species responsible, has been in bloom since November of last year. According to the article, this event constitutes the longest “Red Tide” algal bloom in history. Regularly, blooms occur seasonally, lasting only from a few weeks to a couple months. The length of bloom in combination with the species responsible is catastrophic for the surrounding environment. This species of algae produces a suite of neurotoxins known as brevetoxins (Gebhard et al. 2015). Exposure to these toxins within marine environments has resulted in massive fish kills and increased mortality in loggerhead turtle, and marine mammal populations (Walsh C. et al. 2010).
 


Figure 2. Kemp's ridley sea turtle on Sanibel Island. Photo modified from Andrew West/The News-Press via USA TODAY
Then why is all this so scary? It is because such Red Tide of this nature have never been recorded. This situation is novel, and therefore its overall effect on the underlying ecosystem is unknown. What is known is that mortality rates are increasing. More and more animals are dying as a result of this bloom, but the significance of the losses is still unknown. Will the affected species recover following this event? Will species be lost? Is the length of this bloom unique or will future blooms also be so long? What factors contributed to or enabled such a long-lasting bloom?   

It is equally important to consider the impacts such events will have on us humans. Human health can be directly or indirectly effected by these toxins through toxic aerosols and consumption of contaminated shellfish respectively. Studies have shown that an increased incidence of both respiratory and digestive illnesses can be found in relation to Red Tide presence, especially in those aged 55 or older (Hoagland P. et al. 2014). According to the United States Census Bureau, from estimates in 2017, about 20% of Florida’s population is 65 years of age or older. This means a high percentage of the population is at risk of suffering either respiratory or digestive illnesses due to this bloom. As well as its effects on human health, the Red Tide greatly impacts Florida’s fishing and tourism industries.


Figure 3. Red Tide devastation in Florida. Photo modified from Ben Depp Via National Geographic.
What can we do to prevent these blooms?
Although the specific conditions which enabled this bloom are unknown, many studies have hypothesized which factors likely contributed to this increase in length and frequency. The article states that human activity and climate change are likely the two factors with greatest influence. This is probably because like all other algal species, K. brevis requires sufficient macro-nutrient to enable blooms (Hoagland P. et al. 2014). Increased agricultural practices, water runoff and changes to atmospheric depositions could all contribute to a surplus of nutrients entering the water system and thus becoming available for these algae (Hoagland P. et al. 2014).  To mitigate the impacts of Red Tides, it is important to educate the local communities about how their actions effect their environment. For example, improving the public understanding of how fertilizer use can lead to greater blooms and how blooms effect charismatic species like turtles and dolphins. The public should also be informed of the ways in which Red Tides directly affect their communities from damage to fisheries and tourism to public health concerns.

The effects of the Florida Red Tide can be felt among all trophic levels in the surrounding marine and terrestrial environments. The causes and consequences of this specific event are still unknown and will likely be the subject of rigorous future studies. We should look to determine how we can prevent or minimize the length and severity of these blooms in order to protect the marine environment, the fisheries and tourism industries, and finally our own health.


References
Gebhard, E., Levin M., Bogomolni A., Guise S.D., “Immunomodulatory effects of brevetoxin (PbTx-3) upon in vitro exposure in bottlenose dolphins (Tursiops truncates)” Harmful Algae. 44(2015): 52-62.

Hoagland P., Jin D., Beet A., Kirkpatrick B., Reich A., Ullmann S., Fleming L.E., Kirkpatrick G. “The human health effects of Florida Red Tide (FRT) blooms: expanded analysis”. Environment International. 68 (2014) 144-153.

Resnick, B. Why Florida’s red tide is killing fish, manatees, and turtles. Vox news. October 8th, 2018. https://www.vox.com/energy-and-environment/2018/8/30/17795892/red-tide-2018-florida-gulf-sarasota-sanibel-okeechobee

Walsh C.J., Leggett S.R., Carter B.J., Colle C. “Effects of brevetoxin exposure on the immune system of loggerhead sea turtles”. Aquatic toxicology. 97(2010): 293-303.


Wednesday, October 31, 2018

Losing the rainforest of the sea: Coral reef decline and loss of future ecosystem benefits and services

*This is a guest post by Karuna Sehgal - student in my 'Causes & Consequences of Biodiversity' course. 

The past three decades of human activity has altered the earth in more ways than one. The Earth is losing species, ecosystems and biodiversity because of warming climates, among other factors. Coral reefs, in particular, are greatly impacted by the rise of global surface temperatures.

Coral Reefs throughout tropical and sub-tropical oceans are under tremendous heat stress resulting in coral bleaching and mortality. Corals are animals that live in a symbiotic relationship with microscopic dinoflagellate algae that inhabit the coral tissues (Baker et al., 2008). Increased water temperatures result in corals expelling dinoflagellates living in their tissues, causing the coral to turn white, ending its symbiotic relationship (Heron et al., 2017). This does not necessarily mean death for the coral; however bleaching still adversely impacts corals by inhibiting growth and reproduction (Heron et al., 2017). This symbiotic relationship provides the coral with about 90% of the energy it needs to thrive, it also enables corals to construct limestone skeletons that form the three-dimensional structure of reefs, which provides habitat for over a million species (Heron et al., 2017. They are referred to as the Rainforests of the Sea because they are the most bio-diverse ecosystem in the ocean, comparable to rainforests on land. Species richness and the diversity found in these systems are phenomenal and breathtaking, and yet they are dying at an alarming rate.

Fig. 1: Examples of a healthy and a bleached coral reef (images modified from Wikipedia pages on coral reefs and reef degradation, respectively)

Coral Reefs provide a lot of ecological and economically important services; they gross an estimated value of over $1 trillion (USD) globally, because of their social, economic and cultural services (Heron et al., 2017). With that being said, reefs only account for less than 0.1% of the ocean floor, but host more than one-quarter of all marine fish species (Heron et al., 2017). Climate change alters the pristine attractiveness of coral reefs to tourists, which directly affects low-income coastal countries and small developing islands within coral reef regions (Hoegh-Guldberg et al., 2007). Developing countries are not equipped to respond to climate change, and many rely on tourism for the majority of their economies (Hoegh-Guldberg et al., 2007). But tourist visits are one form of valuation, coral reefs are also critical for supporting fisheries and protecting shorelines from erosion,  For the loss of reef ecosystem services it is going to cost the US about $500 billion per year by 2100 (Hoegh-Guldberg et al., 2015).

This loss of economic value through bleaching is ultimately caused by our activities. Anthropogenic activity has resulted in rising temperatures and increases in the atmospheric concentration of carbon dioxide; this has been the largest increase in global temperature since the pre-industrial times (Stocker et al., 2013). Widespread mass coral bleaching was first documented in 1983 at the time of an extremely strong El Nino (Cofroth et al., 1989). It is important to note that coral reefs have been around a long time and residing in oceans since at least the Triassic period over 200 million years ago, and are well adapted to specific environmental conditions and human activity has damaged them in a matter of 30 years. Therefore water temperatures of even 1-2oC above the normal temperature would result in severe coral bleaching (Heron et al., 2017). It was estimated that coral reefs would take approximately 15- 25 years to recover from mass mortality, but if the frequency of mass mortality events increases to a point where the return time of mortality event is less than the time it takes to recover, the abundance of corals on reefs will decline (Heron et al., 2017).

Ocean acidification is another factor affecting coral reefs because it hinders the coral's ability to build their limestone skeletons and increases bio-erosion of reefs (Heron et al., 2017). With approximately 25% of the emitted CO2 from anthropogenic sources entering the ocean and producing carbonic acid, which then dissociates to form bicarbonate ions and protons, reducing the availability of carbonate to biological systems (Hoegh-Guldberg et al., 2007). These high CO2 levels and ocean acidification are expected to cause coral reefs to erode. A number of studies have determined that the doubling of pre-industrial atmospheric CO2 to 560 ppm decreases coral calcification and growth by up to 40% through the inhibition of aragonite formation as carbonate-ion concentrations decrease (Hoegh-Guldberg et al., 2007). Studies have concluded that the corals will not thrive again until the atmospheric CO2 has been reduced to 320-350 ppm (Heron et al., 2017).

Building the resilience of these reefs by reducing human impacts is now the main focus of organisations like the World Heritage Committee of UNESCO and the Reef Resilience Network. A World Heritage Committee analysis showed that nearly all of the 29 World Heritage coral reef sites were exposed to levels of heat stress that cause coral bleaching, more than twice per decade during the 1985-2013 period (Heron et al., 2017). Roughly 21 of the World Heritage reef properties have been exposed to repeated heat stress during the past three years (Heron et al., 2017), threatening the long-term persists of these unique and valuable places.

Fig. 2: Satellite image of coral bleaching alerts from  2014–2017 (image from NOAA Coral Reef Watch)
Bleaching and heat stress spread across tropical oceans and intensified during El Niño, and continued from La Niña and beyond (Heron et al., 2017). This period has included the three warmest years on record: 2014, 2015, and 2016 (Heron et al., 2017). Figure 2 shows that more than 70% of the global coral reef locations have experienced bleaching and most of these have experienced it twice or more, since June 2014 (Heron et al., 2017).

What is the future of these reefs? Will the next generation be able to see and explore them as we have or will they have to watch documentaries of what used to be? Coral Reefs are the most biologically diverse and economically important ecosystem on the planet, providing ecosystem services, essential to human societies and they are at danger (Hoegh-Guldberg et al., 2007).

References

Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80:435-471.
Cofroth MA, Lasker HR, Oliver JK (1989) Coral mortality outside of the eastern Pacific during 1982-83: Relationship to El Niño. In: Global Ecological Consequences of the 1982-83 El Niño-Southern Oscillation. Glynn, PW. (ed.). Elsevier.
Heron et al. 2017. Impacts of Climate Change on World Heritage Coral Reefs : A First Global Scientific Assessment. Paris, UNESCO World Heritage Centre.
Hoegh-Guldberg O, et al. (2015) Reviving the Ocean Economy: the case for action - 2015. WWF International, Gland, Switzerland.Geneva, 60p.
O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck. (2007). Coral Reefs Under Rapid Climate Change and Ocean Acidificaition. Science, 318, 1-7. Doi: 10.1126/science.1152509
Stocker TF, et al. (2013) Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Cambridge University Press. 
 

-->

Friday, October 26, 2018

Do the economics and logistics of field ecology bias our understanding of environmental problems?

Location of Antarctic field stations. Image from Wikipedia.


Field ecology is difficult, time-consuming and expensive. Ecologists need to make decisions about where to do research, and if research questions focus on remote locations, there are likely a lot of constraints limiting options. For example, if research requires work in the Antarctic, odds are you'll be working at one of a few locations on the coast which, depending on the nature of the research, could bias our understanding of ecological or geological processes operating there.

The research needed for some questions can literally occur almost anywhere without much worry about how local context biases findings. That's not to say that local context will not play a role in ecological dynamics, and we should always be mindful of how local conditions influence the processes we are interested in. However, some questions are sufficiently general that we could envisage running an experiment in our backyard. However, there are research questions that necessitate careful consideration of the geographical location of research.

This is especially true for questions that pertain to the consequences of environmental change on ecological systems. The drivers of environmental change, whether it be pollution, nutrient deposition, changing temperature, extreme weather events or changes in precipitation patterns, all vary across the Earth and their impacts are similarly unequal. We shouldn't expect that a 2 degree C increase in average temperature to have the same effect in the tropics as, say, the arctic.

Location of Nutrient Network sites used in Borer et al. 2014
For some research endeavors, the solution to ensuring geographical coverage has been to replicate studies around the world. Take for example studying the effects of nutrient deposition in grasslands. There is a long history of ecologists adding nitrogen, phosphorus, and other nutrients to grasslands at specific locations in short duration experiments. These studies can tell us about how plant dominance might change, but it is difficult to extend this research to other locations facing different nutrient change patterns or that are inherently structured differently. The solution to this shortcoming is best represented by the globally distributed Nutrient Network experiment. The global experiment includes dozens of sites around the world that all replicate a basic set of experimental applications of plant nutrients, which has resulted in some very influential papers about global change effects on grasslands (e.g., Adler et al. 2011, Borer et al. 2014, Seabbloom et al. 2015).

This issue of the geography of research biasing our understanding of the impacts of global change is especially true for understanding the consequences of climate change in the Arctic. This was highlighted superbly by Metcalfe and colleagues recently (Metcalfe et al. 2018). They showed that most of the terrestrial ecology research in the Arctic has occurred in just a few places. And while this work has been extremely impactful and important for understanding the ecology of Arctic systems, they are not located in places undergoing the most drastic changes in climate. Therefore, because of the geographical location of research, we might not have a very good understanding of the impacts of climate change on Arctic ecosystems.

Where research is being done in the Arctic. Panel 'a' shows where publications are coming from and 'b' shows the impact in terms of number of citations (from Metcalfe et al. 2018).
This shows where photosynthesis has changed the most, which does not correspond well to where the research has been done (from Metcalfe et al. 2018).


This type of mismatch in climate change and research requires that ecologists purposefully establish research sites in areas that are rapidly changing. Metcalfe and colleagues suggest that the governments of Arctic nations establish focused research funding to support and promote research in these regions. This of course requires government dedication. The reality is it is cheaper and more efficient to do more research in existing, well supplied, field stations. Arctic scientists and professional organizations need to lobby environment or research government departments, and this research gap is an opportunity for Arctic governments to cooperate and share research costs.


References
Adler, P. B., E. W. Seabloom, E. T. Borer, H. Hillebrand, Y. Hautier, A. Hector, W. S. Harpole, L. R. O’Halloran, J. B. Grace, T. M. Anderson, J. D. Bakker, L. A. Biederman, C. S. Brown, Y. M. Buckley, L. B. Calabrese, C.-J. Chu, E. E. Cleland, S. L. Collins, K. L. Cottingham, M. J. Crawley, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, P. A. Fay, J. Firn, P. Frater, E. I. Gasarch, D. S. Gruner, N. Hagenah, J. Hille Ris Lambers, H. Humphries, V. L. Jin, A. D. Kay, K. P. Kirkman, J. A. Klein, J. M. H. Knops, K. J. La Pierre, J. G. Lambrinos, W. Li, A. S. MacDougall, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. W. Morgan, B. Mortensen, J. L. Orrock, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. Stevens, L. L. Sullivan, G. Wang, P. D. Wragg, J. P. Wright, and L. H. Yang. 2011. Productivity Is a Poor Predictor of Plant Species Richness. Science 333:1750-1753.

Borer, E. T., E. W. Seabloom, D. S. Gruner, W. S. Harpole, H. Hillebrand, E. M. Lind, P. B. Adler, J. Alberti, T. M. Anderson, J. D. Bakker, L. Biederman, D. Blumenthal, C. S. Brown, L. A. Brudvig, Y. M. Buckley, M. Cadotte, C. Chu, E. E. Cleland, M. J. Crawley, P. Daleo, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, G. Du, J. Firn, Y. Hautier, R. W. Heckman, A. Hector, J. HilleRisLambers, O. Iribarne, J. A. Klein, J. M. H. Knops, K. J. La Pierre, A. D. B. Leakey, W. Li, A. S. MacDougall, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, B. Mortensen, L. R. O'Halloran, J. L. Orrock, J. Pascual, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. Stevens, L. L. Sullivan, R. J. Williams, P. D. Wragg, J. P. Wright, and L. H. Yang. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517-520.

Metcalfe, D. B., T. D. Hermans, J. Ahlstrand, M. Becker, M. Berggren, R. G. Björk, M. P. Björkman, D. Blok, N. Chaudhary, C. J. N. e. Chisholm, and evolution. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution 2:1443.




Seabloom, E. W., E. T. Borer, Y. M. Buckley, E. E. Cleland, K. F. Davies, J. Firn, W. S. Harpole, Y. Hautier, E. M. Lind, A. S. MacDougall, J. L. Orrock, S. M. Prober, P. B. Adler, T. M. Anderson, J. D. Bakker, L. A. Biederman, D. M. Blumenthal, C. S. Brown, L. A. Brudvig, M. Cadotte, C. Chu, K. L. Cottingham, M. J. Crawley, E. I. Damschen, C. M. Dantonio, N. M. DeCrappeo, G. Du, P. A. Fay, P. Frater, D. S. Gruner, N. Hagenah, A. Hector, H. Hillebrand, K. S. Hofmockel, H. C. Humphries, V. L. Jin, A. Kay, K. P. Kirkman, J. A. Klein, J. M. H. Knops, K. J. La Pierre, L. Ladwig, J. G. Lambrinos, Q. Li, W. Li, R. Marushia, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. Morgan, B. Mortensen, L. R. O'Halloran, D. A. Pyke, A. C. Risch, M. Sankaran, M. Schuetz, A. Simonsen, M. D. Smith, C. J. Stevens, L. Sullivan, E. Wolkovich, P. D. Wragg, J. Wright, and L. Yang. 2015. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat Commun 6.

Thursday, September 20, 2018

Frank the Fish made me an Environmental Scientist


Guest post by Neda Ejbari, MEnvSc

Children are intelligent, autonomous human beings, and although they lack experience in many things, that does not make their thoughts, feelings, and values invalid. Children are some of the most compassionate people you will meet and influencing them in a positive way early on in their development is crucial for the sake of a brighter future for humankind.

A lot of this positive influence must come from science. Understanding our planet’s functions and learning the structure and behavior of the physical and natural world is crucial to ensure that we can protect it. However, to do this, we as scientists need to be experts at communicating science. We need to pass down what we learn in a way that is understandable, not just for new-coming scientists, but for those without the background as well.

Science communication can be discouraging for many. The fear of “dumbing down” one’s work until it is no longer factual or legitimate is always a concern among scientists. In addition to this, many scientists simply do not have the background to effectively communicate their science. They might lack the training or the resources to do so. Just having the public’s attention long enough to get one’s point across can be extremely difficult to do. If someone told you there was going to be a talk about eutrophication in the Great Lakes, would you go? If you were scrolling down Twitter or Facebook, would you stop long enough to understand what that table or graph you were seeing meant?

Let’s do a little experiment. 

What graph is easier to understand?




Taken from Twitter to discuss climate change, a graph obtained from John O'Sullivan & Norm Kalmanovich’s news article: What Michael Mann’s ‘Hockey Stick’ Graph Gave To UN Climate Fraud, which was taken from Michael Mann’s 1999 paper showed a confusing analysis that is hard to interpret without some background knowledge in climate change.




Also taken from Twitter, an easy to understand tweet from Peter Gleick about climate change and what it means.

The issue with science communication is that it's a double-edged sword. You need to make your information enticing to the audience, but you need the resources and the proper training in order to do so. And the only way to get that support is through the interest and push from the public. It’s a vicious cycle; like a student being told they need experience for a job —but needing that job for the experience. The fact of the matter is; most scientists don’t have those resources or training to communicate their research to a wide audience, which makes it difficult to get the public to care for their cause and push for better science communication in the first place.


Now imagine taking that fear and doubling it as you try to communicate to children, the future of our planet’s well-being.

In a study completed by Andrea Bou - Vinals and Silvia Prock, scientists admitted to having many fears when trying to communicate with children. In Bou-Vinals and Proc’s study, scientists were made to run a workshop and roleplay with children ages 9 to 13 with the goal of engaging them in scientific activities. The consensus of this experiment was that scientists were afraid that they were boring the children or that they wouldn’t be able to get their scientific knowledge across. On the children’s end, their interpretation of the experiment was that the scientists were there to “please children, because children are the future” and “having fun with knowledge transfer.” It shows that children are aware of their importance, and the importance of learning from scientists.

So, what can we do?

We as scientists need to understand that proper, easily comprehensible communication is key to getting people to care. Scientific literature often sounds extremely unbiased and un-opinionated. The issue with this is that most people are not trained to read scientific literature. There is jargon and difficult words that many will not understand because they will never have the context for it. To communicate effectively a scientist, there must be a compromise in the language to get your point across. Sometimes, you must sacrifice the language entirely and use other means for communication, i.e., videos, infographics or applied/interactive experiments.

We as the public also need to understand that science is important. We need to improve our scientific literacy and look for answers to questions that might strike us on a day-to-day basis. We need to encourage ourselves to take the first step and seek knowledge, and in turn, pass that behaviour on to our children as well. We must expose our children to the knowledge we have, and trust that they can understand what is being presented to them. We as the public need to support our scientists and push for their information to become easily accessible and comprehensible to us, as it is the masses that often influence the choices of policy makers.

Children are important because they are easily impressionable. I speak from personal experience when I say that the most conservation-driven choices I make today stemmed from early education and youthful experience. For example, a habit that I formed when I was young was letting the tap water run while brushing my teeth. Although turning it off seems like the obvious thing to do, it was more convenient for me to let it run until I was finished. The implications behind why this was bad to do was not apparent until I watched a commercial from Sesame Street. It made the reason behind why I should conserve water very obvious and very clear to me at a young age, and I still think about it to this day.



The video still holds impact. The animation is clear, the audio is crisp, and the message is still extremely relevant. What’s interesting is that the majority of the comments on the video reflected my exact thoughts and feelings. The video stuck with me after several years and is always the first thing that comes to mind when I think about conserving water, or conserving anything, for that matter. Even now, sitting in a graduate level Conservation Biology class, when we discuss the impact of human activity on the natural world, I automatically imagine Frank the Fish stuck in his dried-up pond. 



So why was this video so hard to forget? Why did it have such a clear impact on me and several others?
As a seven-year-old living on the 6th floor of an apartment complex, I didn’t have a backyard to begin with, and yet the message was clear. Because I had seen a natural environment before, I understood that my actions were indirectly impacting that area of nature I had once seen. And because I was able to relate it to that, I was able to empathize with the commercial and change my behaviour as a result.

This video was an effective tool of science communication. As environmental scientists, we all know that running water does not directly drain a pond in your backyard. There’s a lot of complicated architect, engineering and science that goes behind how we get our clean water from the environment; and yet the public —and children especially— needed none of those small details to understand the big picture.

It was an effective tool of science communication because it showed me, and people like me, the direct impact of my behaviour in the grand scheme of things. The video influenced me as a child and encouraged me to pursue a field of biology and environmental science as a result. And now, this video will be passed down because it has been presented and saved in a form of media that can be spread and shared with a simple click of a button.

Our goal as members of the human race should be to constantly ask the question: do I understand this? Would I be able to explain this to my children so that they can understand it? Truthfully, we won’t always be able to. But if we support our scientists and give them the tools and support they need to effectively present their work to us, and trust that our children are clever enough to understand what they are being told, great things can happen.

To learn more about the importance of science communication, check out the following links:

References
Merzagora, M., & Jenkins, T. (2013). Listening and Empowering Children in Science Communication. Jcom Journal of Science Communication, 12(3).

Mann, M. E., Bradley, R. S., & Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical research letters, 26(6), 759-762.