Thursday, August 24, 2017

Novel habitat, predictable responses: niche breadth evolution in geckos

At a time of immense ecological change (such as the Anthropocene), organisms have a few options. They can move, tolerate, adapt, or, in failing to do so, face extinction. One or most of those options may not be available to most species. For example, the question of whether most species can adapt rapidly enough to maintain populations in degrading habitats, rising temperatures and increasing environmental variability has (at least in part) motivated the study of rapid or contemporary evolution. Studying the probability of successful selection and adaptation over ecological timescales may be very important for understanding the options available to species.

de Amorim et al. (2017, PNAS) describe one such example, where the result of novel environmental change provides a unique opportunity to observe rapid evolution. Beginning in 1996, a reservoir in Central Brazil was created by flooding a huge area, creating nearly 300 islands and massively affecting local wildlife. Gymnodactylus amarali was the most common lizard (a termite-specialized gecko), and the authors sought to determine the impacts of rapid isolation on the species.

Isolation on islands created an new set of biotic conditions – other termite eating lizards went extinct on islands, increasing the available diet breadth, particularly increasing the availability of larger termites. Larger termites require geckos have the physical ability to catch and processes them. One possibility is that to take advantage of this new resource, G. amarali on islands would need larger heads. Because larger heads and bodies come with increased energy requirements, the authors predicted that the island geckos would have larger heads, but no change in overall body size.
Termite size increased on average on islands; for the same body size, head length tended to be larger on islands. 
Indeed, island geckos had higher diet breadths, driven by the availability of larger termites and an increased ability to catch them via larger head lengths. Increased diet breadth was accompanied by increased head size, but not body size.

Notably, this change in diet and associated characters occurred independently across multiple reservoir islands, beginning once they were isolated from the mainland. This is an interesting example of rapid evolution precisely because evolution took the same path in every case, and because it occurred so rapidly (less than 15 years). This is not always the expectation - in many cases, human activities (e.g. fragmentation) will increase decrease population sizes and genetic diversity, thereby increasing drift and decreasing the predictability (and speed) and adaptation. Contrasts between successful and unsuccessful adaptive responses will help us understand better how and when fragmentation threatens populations.

Mariana Eloy de Amorim, Thomas W. Schoener, Guilherme Ramalho Chagas Cataldi Santoro, Anna Carolina Ramalho Lins, Jonah Piovia-Scott, and Reuber Albuquerque Brandão. 2017. Lizards on newly created islands independently and rapidly adapt in morphology and diet. PNAS. 114 (33) 8812-8816.

No comments: