This year's conference has a strong focus on infectious disease which included today's symposium Community ecology for infectious diseases organized by Joanne Lello.
Throughout the symposium a great deal of interesting questions related to host-parasite interactions being addressed with a diverse set of methods ranging from the mathematical biology of Andy Dobson, to the experimental C. elegans / pathogenic bacteria systems of Olivier Restif and Gregg Hurst, the wild rodent systems of Heike Lutermann, Andy Fenton, and Owen Petchey, and the next generation molecular techniques employed by Serge Morand.
However, it was Robert Poulin the keynote speaker who set the theme of the symposium to which many of the speakers kept returning: What are the future directions of parasite community ecology? Dr. Poulin began the session with an overview of the recent trends in parasite ecology over the last few decades and Lawton's view that community ecology is a mess (Oikos 1999 – 84: 177-192). The initial research done on host-parasite interactions was centred within the one host – one parasite framework, often dealing solely with the effect of the parasite on its host. This was then expanded to the one host – multi-parasite level, often investigating drivers of parasite species richness among hosts via comparative analyses and occasionally extending to parasite-parasite interactions though the use of null models. Although the data were available beforehand, only recently has the field moved into the domain of multi-host – multi-parasite interactions, now focusing on questions of infection dilution, meta-analyses of parasite richness, and describing the networks of interactions within these communities.
Looking ahead into the future of this discipline, Poulin suggested that researchers should expand beyond simple topological networks of associations to include the strength of interactions, potentially via energy flow, and the use of network analyses on smaller scales using individual hosts. Serge Morand also highlighted the need to develop and incorporate parasite phylogenies into these multi-host - multi-parasite communities. His talk highlighted recent advances in next generation sqeuenceing and how these techniques can be applied to parasite communities. One obvious advantage is that through molecular phylogenetics researchers will be able to define and quantify a higher degree of parasite diversity, but additionally molecular markers can be used to uncover unexpected host diversity or identify species that may be difficult to distinguish through traditional taxonomic keys. Morand continued to press the application of new techniques in immunogenetics and the integration of methods in molecular epidemiology with the theory of transmission and community ecology.
Finally Andy Dobson posited that in addition to pressing forward with our research into infectious disease, it is imperative that contemporary researchers revist the “best hits” of the past and address important issues that have fallen to the wayside. Primarily Dobson pointed out that mathematically, aggregation and virulence of parasites have been shown as important factors for determining parasite co-existence. However, the concept of aggregation is often left out of contemporary discussions although it will be important to determine natural forms of the aggregation distribution and also to attempt to make the link between immunity and aggregation of parasites in a multi-host – multi-parasite community.
Whether incorporating novel molecular and statistical techniques, exploring previously unstudied model systems, or revisiting the context of contemporary research, it is clear that community ecology and infectious disease has a promising future and that it has progressed greatly from the mess Lawton made it out to be in 1999.
No comments:
Post a Comment