Showing posts with label conservation. Show all posts
Showing posts with label conservation. Show all posts

Friday, May 6, 2016

What’s so great about Spain? Assessing UNESCO World Heritage inequality.

Some places are more valuable than others. We often regard places as being of high or unique value if they possess high biological diversity, ancient cultural artefacts and structures, or outstanding geological features. These valuable places deserve special recognition and protection. The sad reality is that when we are driven by immediate needs and desires, these special places are lost.

The natural world, and the wonderful diversity of plants and animals, is on the losing end of a long and undiminished conflict with human population growth, development, and resource extraction. We don’t notice it when there is ample natural space, but as nature becomes increasingly relegated to a few remaining places, we place a high value on them.

The same can be said for places with significant cultural value. Ancient temples, villages, and human achievement are too valuable to lose and we often only have a few remnants to connect us to the past.

In either case, natural or cultural, when they’re gone, we lose a part of us. That is because these special places tell us about ourselves; where we come from, how the world shaped us, and what unites all of humanity. Why did the world cry out in a united voice when the Taliban destroyed the Buddhas of Bamiyan in 2001, even though many of those concerned people were not Buddhist? The answer is simple –the expansion of Buddhism out of India along ancient trade routes tells us why many Asian nations share a common religion. They tell us about ourselves, the differences that interest us, and the similarities that bind us. The same can be said about the global outcry over the recent destruction of the ancient city of Palmyra by ISIS.

Before and after photos of the taller of the Buddhas of Bamiyan. Image posted by Carl Montgomery CC BY-SA 3.0.

Similarly, the natural world tells us about ourselves. The natural world has constantly shaped and influenced what it means to be human. Our desires, fears, and how we interact with the natural world are products of our evolution. If I flash a picture of a car to my 500-student ecology class, very few students, if any, screech in fear. But if I flash a photo of a hissing cobra or close-up of a spider, invariably a bunch of students squirm, gasp, or scream. Rationally, this is an odd response, since cars are the leading cause of death and injury in many western countries. Snakes and spiders kill very few people in Canada.

These special places deserve recognition and protection, and that is what the UNESCO World Heritage designation is meant to achieve. To get this designation for a site requires that countries nominate ones that represent unique and globally significant contributions to world heritage, and are adequately protected to ensure the long-term existence of these sites.  World Heritage sites are amazing places. They represent the gems of our global shared heritage. They need to be protected in perpetuity and should be accessible to all people. Though some I have visited seem like they are loved too much with high visitation rates degrading some elements of Heritage sites.

Examples of UNESCO World Heritage sites. A) The Great Wall of China. B) The Gaoligong Mountains, part of the Three Parallel Rivers of Yunnan. C) Angkor Wat in Cambodia. D) An example of a site that may be too loved -Lijiang in Yunnan. All photos by Shirley Lo-Cadotte and posted on our family travel blog -All The Pretty Places.

UNESCO World Heritage sites should also be representative. What I mean by this is that they should be designated regardless of national borders. Heritage sites are found on all continents across most countries –though a number of politically unstable countries (e.g., Liberia, Somalia, etc.) do not possess Heritage sites, likely because they lack the organization or resources to undertake the designation application process, and they lack the governance to ensure a site is adequately protected. But there are substantial differences in the number of World Heritage sites across nations[1]. Some countries, because of inherent priorities, national pride, resources or expertise, are better able to identify and persuade UNESCO that a particular place deserves designation.

The distribution of the number of UNESCO World Heritage sites across countries and the top ten.

Why do we see such disparity in the number of World Heritage sites -where many countries have few sites, and a few countries have many sites? This is a difficult question to answer, and to do so I took an empirical approach. I combined data on the number of sites per country with Gross Domestic Product (GDP)[2], country size[3], and country population size[4]. I then ran simple statistical analyses to figure out what predicts the number of Heritage sites, and identified those countries that are greatly over-represented by Heritage sites, and those that are very under-represented. A couple things to note, the best statistical models included variables that were all log-transformed, I excluded the World Heritage sites that spanned more than one country, and I did not include countries that did not have any Heritage sites. The data and R code have been posted to Figshare and are freely available.

All three of GDP, area, and population size predicted the number of World Heritage sites. It is important to note that these three country measures are not strongly correlated with one another (only moderately so). So, larger, richer and more populous countries had more World Heritage sites. This makes sense –big countries should contain more unique sites due to random chance and more populous countries tend to have longer historical presence of organized states, and so should possess more cultural relics (especially China). GDP is more difficult to assign a reason, but high GDP countries should have robust national parks or other bureaucratic structures that assess and protect important sites, making them easier to document and justify for UNESCO.  GDP is quite interesting, because it is the single best measure for predicting the number of Heritage sites, better than population size and area. Further, neither country density (population/area) nor productivity (GDP/population) are strong predictors of the number of Heritage sites.

The relationships between the number of World Heritage sites and GDP, area, and population. Note that the axes are all log-transformed.

While these relationships make sense, it is also clear that countries are not all close to the main regression line and some countries are well above the line –meaning they have more Heritage sites than predicted; as well as some below the line and thus having fewer sites. When I combine the different measures in different combinations and look for the best single statistical explanation for the number of World Heritage sites, I find that the combination including GDP and population size, and their interaction (meaning that population size is more important for high GDP countries) is the best. For aficionados, this model explains about 65% of the variation in the number of Heritage sites.

Now, we can identify those countries that are over or under represented by UNESCO World Heritage sites according to how far above or below countries are from the predicted line (technically, looking at statistical residuals).

The deviation of countries from the predicted relationship between the number of sites and GDP and population (and their interaction). The top 5 over-represented and under-represented countries are highlighted.


The top five over-represented countries are all European, which means that given their GDP and population size, these countries have more World Heritage sites than expected. At the other extreme, countries under-represented come from more diverse regions including Africa, the Middle East and Southeast Asia.

An interesting comparison to think about is Germany and Indonesia. Germany has more World Heritage sites than expected (residual = +0.61) and is a moderately sized, high GDP country. Let me say, I like Germany, I’ve been there a half a dozen times, and it has beautiful landscapes and great culture. However, does it deserve so much more World Heritage recognition than Indonesia, which has fewer sites than expected (residual = -0.63)? Indonesia has spectacular landscapes and immense biodiversity and great cultural diversity and history. To put it in perspective, Germany has 35 World Heritage sites and Indonesia has just 8.

To answer the question in the title of this post: what’s so great about Spain? Well, it not only has beautiful and diverse natural landscapes and cultural history, but it appears to have the infrastructure in place to identify and protect these sites. It's place at the top of UNESCOs relative (to GDP and population) ranking of the number of World Heritage sites means that Spain's natural and cultural wonders are in good hands. However, for the countries at the other end of the spectrum, having relatively few World Heritage sites probably is not a reflection of these countries being uninteresting, or that they have little to offer the world, rather it is something more alarming. These places lack the financial capacity or national will to fully recognize those places that are of value to the whole world. The problem is that the globally important heritage that does exist in these places is at risk of being lost. These under-represented countries serve as a call to the whole world to help countries not just identify and protect heritage sites but to aid these countries with infrastructure and human well-being that empowers them to prioritize their natural and cultural heritage.

Saturday, February 13, 2016

The vanishing pangolin: How do you change the value of an endangered species?

Extinction is forever. Extinction reduces the biological heritage of the Earth and is something that we cannot undo.

While living in China, and traveling around Asia, I have said something to my children I have never said before: “I want you to take a really good look, these animals will go extinct in your lifetime”.  I said this as we were watching 8 of the 60 remaining Hong Kong pink dolphins.

Hong Kong pink dolphin (photo by Shirley Lo-Cadotte)

Species become rare and endangered for many reasons, like habitat destruction, pollution, human facilitated spread of problematic species (rats for example), and direct harvesting. While all of these factors are subject to laws and regulations that attempt to control them, it is the last one, harvesting, that relies most on altering peoples' wants and desires. I don’t know why, but to me it is also the saddest cause, the idea that a species dies out because we desire it and kill it or chop it down, just doesn’t seem right.  

Walking through the market alley near my apartment in Guangzhou, China, I saw something that both intrigued and horrified me: a dead and quartered pangolin. You may not be familiar with pangolins –also called scaly anteaters; they are mammals about the size of a large cat or medium-small dog (like a cocker spaniel), with a very long and thick prehensile tail that they use in trees. Their most unique feature is that they are covered in large flat scales that are made of keratin –the same as your fingernails. 

A Chinese pangolin, Manis pentadactyla (https://commons.wikimedia.org/wiki/File:Pangolin%27s_tail.jpgsted to Flickr by verdammelt cc-by-sa-2.0) 
Pangolins are critically endangered. They also have the distinction of being one of the most trafficked animals in the world. In China and Vietnam there is high demand for pangolins because they are considered a delicacy and more importantly their scales are used in traditional medicine. These scales are believed to provide a cure for a number of diseases, including cancer. The incidence of cancers in China is skyrocketing, which is not surprising given the level of pollution, and couple this with increasing affluence, the desire and ability to pay for pangolin parts has never been greater.

Obviously pangolin scales do not cure cancer. You might as well save your money and suck on your fingernails instead, but evidence and logic are not likely to sway mortal fear. There are groups in Asia dedicated to protecting endangered animals and educate citizens about wildlife. Such organizations have an opportunity to capitalize on recent attitude shifts in China and elsewhere, where animal wellbeing is increasingly seen as important. In China, pet ownership has increased dramatically over the past decade and pets are now seen as companions –which I suspect was partially a result of the one-child policy. But the demand for pangolins still exists. When we visited the Angkor Conservation Centre in Cambodia, which works tirelessly to rehabilitate animals and educate people, they were recovering from the theft of one of their pangolins from an enclosure, which they knew was transported to China.

The Chinese authorities are coming down hard on the illegal pangolin trade. They now routinely arrest individuals selling pangolins and seize large shipments. While such seizures and arrests show that the Chinese government is taking pangolin protection seriously, there is only so much they can do while demand is high.

Police confiscating a large illegal pangolin shipment bound for China (photo originally from news.163.com) 

My Mother-in-law, who is from southern China, said it best when I told her about the dead pangolin in the alley: “people just need to be educated”. That is really where the answer lies. Laws can only change peoples’ behaviour so much; education campaigns are desperately needed. Currently, there is an internationally funded billboard campaign in China to stop people from buying elephant ivory. Ivory demand is high in China. Despite the importance of reducing ivory purchases, I would argue that this type of education campaign needs to focus a little closer to home, and Pangolin conservation efforts are in desperate need of help. 

When we were visiting the conservation centre in Cambodia, I told my children that the Pangolin would go extinct in their lifetime. I really hope that I am wrong.




Monday, December 14, 2015

A bird in the hand… Worth a bunch in the bush?

Guest post by University of Toronto-Scarborough Masters of Environmental Science Student Amica Ferras
     In less than a week, Christopher Filardi achieved a level of cyber-fame worthy of this digital age— but for all the wrong reasons. If you haven’t heard of him yet, that’s okay. Not all of us peruse biodiversity articles over our morning cereal. Here’s what you’ll need to know to hold your own around the water cooler.
Photo: University of Kansas

Christopher Filardi is the director of Pacific Programs at the American Museum of Natural History’s Center for Biodiversity and Conservation. This past September he and his team were part of an international expedition to the mountains of Guadalcanal, one of the islands in the Solomon Archipelago. Lead by native islanders, the team was on a mission to assess the biodiversity and habitat constraints of this unique region in order to develop a tailored conservation strategy. It was there on those mysterious island mountains that Filardi happened upon a true legend by any biology geek’s standards — the Guadalcanal Moustached Kingfisher. Even if you have zero interest in species biology, the stats on this bird are impressive. Only three sightings of the Kingfisher have been documented in all of history: a single female captured in the 1920’s, and another two in the 1950’s. No male specimen had ever been recorded and no live animal had ever been photographed. This bird can play a mean game of Hide-and-Go-Seek.
Upon discovery of the Kingfisher colony, Filardi and his team set to work. Calls were recorded, habitat was meticulously documented, behavior and motion patterns were scrutinized and population dynamics were assessed. And then, they killed one. (Cue the angry villagers with pitchforks and hippies with signs).
The collection was purely scientific. Filardi and his team stuck to a field biology motto of collect, dissect, but ultimately respect. Filardi hoped that the Kingfisher specimen would open the door to discovering more about the elusive species and their ultra-specific habitat. But the road to media-hell is paved with good intentions, and as the story spread like wildfire Filardi’s actions fell under attack. His ‘collection’ was deemed “perverse, cruel” by a representative from PETA to the Daily News, and the UK online Daily Mail described it as “slaughter”. The story exploded, appearing in the Huffington Post, Washington Post, Nature World News and Audubon, just to name a few. For those links and more I suggest checking the wonderful world of Google, but I will personally recommend that you read Fildari’s self-defense in Audubon https://www.audubon.org/news/why-i-collected-moustached-kingfisher, and the Toronto Star’s coverage of the controversy http://www.thestar.com/news/insight/2015/10/17/why-a-scientist-killed-a-bird-that-hadnt-been-seen-in-50-years.html. The Star does a fabulous job of presenting both sides of the story, and also goes into detail about the rather dubious past of field biology.
In the 1700’s and 1800’s specimen collection was more sport than science. It was a my-stuffed-animal-carcass-is-bigger-than-your-stuffed-carcass race, and rare species paid the ultimate price. Great Auks, for example, upon classification as endangered in 1775, were hunted at an alarming rate by naturalists attracted to its rareness. In 1884 a final pair of Auks was caught by fishermen, and no Auk has ever been sighted since. Specimen collection has come a long way since then though, and field biology has contributed to some groundbreaking scientific discoveries. Consider eggs— comparisons of eggshell thickness from samples collected across decades was used to identify the detrimental effects of DDT and other pesticides to natural ecosystems.
So, those are the facts. And my opinion about it? I’m siding with Filardi. Science has come a long way from naturalist trophy hunting in the 1800’s. Nowadays, before even setting foot outside of the lab scientists must undergo a rigorous evaluation process to determine if collection permits will be granted. Cost-benefit analyses, potential outcomes, and fragility of a species and ecosystem are all heavily weighted in before a decision is reached. Filardi’s expedition was no exception to this rule. (And for anyone questioning the usefulness of collections at all, I suggest you read the following article http://biology.unm.edu/Witt/pub_files/Science-2014-Rocha-814-5.pdf. I’d be happy to argue with you on that front another day).
It wasn’t as if Filardi saw the Kingfisher, pulled a net out of his pack and started swinging. After discovering the Kingfisher colony, the bird was carefully observed over several days. Input from the native islanders, assessments of habitat resilience and population robustness were all carefully analyzed before deciding to humanely collect the single male specimen. The unwilling sacrifice of the Kingfisher was honorably recognized, and the collection will be worthwhile if Filardi has anything to do with it. Scientists now have access to a complete set of genetic information for the Kingfisher. It will now be possible to undertake full molecular, toxicological and evolutionary diagnostics. Scientists may discover disease and pollutant susceptibilities that will guide Kingfisher protection efforts, or identify a direct evolutionary pressure to explain the appearance or behavior of the birds. At a more macro level, the specimen could reveal a shared trait between all high-elevation avian species or allow for an assessment of the particular environmental pressures the island ecosystem exerts over its inhabitants.  
Remember though, the point of the Guadalcanal expedition was not a Kingfisher hunt, but an internationally commissioned excursion to study the biodiversity and ecosystem threats in the Solomon Archipelago. Working with native islanders and Solomon government officials, Filardi’s team was working to establish a conservation strategy to protect the unique island system. The Pacific Island tribes have tended to their mountainous lands for decades, but recent international development has threatened the natural state of the ecosystem. Intensive mining and logging ventures have already begun transforming the lowlands of the islands, and climate change at large is effecting the delicate balance of ocean and forest features that unique species like the Kingfisher rely on. For species limited to a single isolated habitat, even minor changes in soil pH, precipitation or fluid motility can have astronomical effects on species survival. These are not the resilient squirrels and raccoons we in North America watch thrive everywhere from lush forests to derelict urban alleyways. Filardi’s collection will go a long way in identifying what needs to be done to protect these habitat-specific island species.
In fact, it already has. Discovery of the Kingfisher led Filardi to talks with local tribes and the Solomon government which culminated in formal agreements to protect the island mountain region under the recently passed Protected Areas Act. Filardi has already booked a return flight to Guadalcanal to help negotiate the next steps in this exciting conservation effort.

So, what do you think? 

Monday, November 23, 2015

Conservation’s toughest decision

Guest post by Shelby Hofstetter, currently enrolled in the Professional Masters of Environmental Science program at the University of Toronto-Scarborough

“We should have thrown in the towel years ago!”- the dinner-table conversation takes a drastic turn from gushing over new panda bear cubs at the Toronto Zoo to a more pessimistic view of the state of global panda conservation efforts. The speaker of these words is recalling a program that aired on the CBC when the pandas were first arriving at the Toronto Zoo. In it, host Amanda Lang acknowledged herself as a “panda hater” and expressed her disapproval of the money wasted on continued panda conservation efforts that are based solely on their appearance (link to video below). As someone who queued in line for the chance to take far too many pictures of the adorable bears, I blanch at some of Lang’s comments that pandas are “big and stupid“ and “want to be extinct”. But as a student of conservation, I recognise the underlying truth that we as a society have a bias for spending our conservation dollars on big, fluffy animals, regardless of their likelihood of survival.

(Photo taken by Shelby Hofstetter at the Toronto Zoo)

But what are the alternatives? With the realisation that funds for biodiversity conservation are finite, there has been a long history of debate over the best methods for choosing worthy species. The umbrella species concept seems to be the logical response to this conundrum – the classic 2 for 1 sale where conservation efforts for one species have the added bonus of protecting various other species that share the same ecosystem. This is the reason why some claim that the “big, fluffy” species are often highlighted in conservation projects, because the large, continuous tracts of land that are a necessity for their protection become a safe haven for many more.

The reality of the umbrella species concept may not be as simple however- there is some debate over how well it actually works. In some cases the large habitats required for the umbrella species do not overlap with biodiversity hotspots for other types of organisms like invertebrates, plants, amphibians or reptiles[1]. And unfortunately, even in cases where these pieces of habitat would provide protection for additional species, safeguarding the large amount of land necessary is often unrealistic[2].

Figure 1. Based on phylogenetic diversity, species A would be a higher conservation priority than species B or C as it has fewer close relatives that would be similar genetically[4]


Another response to this conservation riddle is aptly named the “Noah’s Ark Problem”, and is a framework for choosing species for conservation based on cost and likelihood of survival, but also on phylogenetic diversity[3]. This objective focus on phylogenetic diversity, or the amount of genetic history that a species contains, has gained momentum in recent years and is aimed at saving species that encapsulate high amounts of Earth’s evolutionary life history. The hope is that phylogenetic diversity is correlated with genetic diversity in general, which could also give these species a better chance of adapting to a changing planet[4].

Another notion that is becoming more prevalent is the consideration of ecosystem services, or the benefits that humans derive from a species or ecosystem, when planning for conservation projects. This concept is not necessarily centered around a specific species, but is more focused on the ecosystem as a whole. The emphasis on ecosystem services may help increase the perceived relevance of conservation projects, as the benefit to society is being highlighted. The uptake of this idea within global conservation efforts has been slow however, with less than 10% of conservation assessments including ecosystem services as part of their rationale for conservation[5]. There also seems to be a push for determining the corresponding economic and monetary value of the services that ecosystems provide to society. This is a science that, in a world focused on dollars and cents, may become very important to determining which species or areas are worthy of conservation efforts.

The jury is still out on how to best make conservation’s toughest decision-   determining which struggling species on this planet should be the lucky winners of our conservation resources. In the meantime the importance of this issue is becoming very clear, as many suggest that Earth is currently experiencing a sixth mass extinction. Smart and timely decision-making is vital for which species limited conservation efforts should be focused on. I wouldn’t go so far as to call myself a “panda hater”, or suggest that we “throw in the towel” on conservation efforts for big fluffy species that may not be likely to recover, but I do agree that these decisions should go beyond visual appearances.
Additional Links:
link to Amanda Lang video: https://www.youtube.com/watch?v=0bm-kEnK3yk


References:
1. Marris, E. (2013, December 24). Charismatic mammals can help guide conservation. Nature | News.
2. Fleishman, E., Blair, R., & Murphy, D. (2001). Empirical Validation Of A Method For Umbrella Species Selection. Ecological Applications, 11(5), 1489-1501.
3. Weitzman, M. (1998). The Noah's Ark Problem. Econometrica, 66(6), 1279-1298.
4. Owen, N. (2014). Life on the edge. Significance, 26-29.
5. Egoh, B., Rouget, M., Reyers, B., Knight, A., Cowling, R., Jaarsveld, A., & Welz, A. (2007). Integrating ecosystem services into conservation assessments: A review. Ecological Economics, 63(4), 714-721.

Tuesday, November 10, 2015

Culling Koalas for Conservation

Guest post by Stefanie Thibert, who is currently enrolled in the Professional Masters of Environmental Science program at the University of Toronto-Scarborough


Euthanizing diseased koalas may be the most effective management strategy to save koalas from extinction in Queensland. A recent study published in the Journal of Wildlife Disease suggests that if 10% of terminally diseased and sterile koalas were culled while other infected koalas were treated with antibiotics, chlamydial infections could be completely eliminated and population sizes could increase within four years. 
The beloved koala relaxing in a eucalyptus tree
(Source:
http://www.onekind.org/be_inspired/animals_a_z/koala/) 

Although koalas are under pressure from habitat degradation, dog attacks and road accidents, disease burden is the largest threat to its population sizes. It is estimated that 50% of the current koala population in South-East Queensland is infected with the Chlamydia spp. The sexually transmitted disease causes lesions in the genitals and eyes, leading to blindness, infertility, and ultimately death. Rhodes et al. (2011) suggest that reversing the observed population decline in Queensland koalas would require either entirely eliminating deaths from cars and dogs, complete reforestation, or reducing deaths caused by Chlamydia by 60%. It is clear that the best conservation tool is to reduce the prevalence of chlamydial infection.

In the study, Wilson et al. (2015) examined the potential impact of euthanizing koalas infected with Chlamydia. As shown in Figure 1, computer simulation models were used to project koala population sizes based on four separate intervention programs: “no intervention”, “cull only”, “treat only”, and “cull or treat”. In the “cull or treat” program, sterile and terminal koalas were euthanized, while infected kolas that were not sterile or terminal were treated with antibiotics. It was concluded that the “cull or treat” is the most successful intervention program for increasing long-term population growth and eliminating chlamydial infections. 
The projected numbers of koalas in the Queensland population under different intervention programs.(From Wilson et al. 2015)
Without intervention, it is estimated that merely 185 koalas will persist in 2030. Under both the “cull only” and “treat only” intervention, it would take seven years before there would be greater koalas numbers than there would be without intervention. Under the “cull or treat” program, the population size was projected to overtake the no-intervention population after four short years. The population size in 2030 is also greatest under the “cull or treat” intervention. The increase in koala numbers in the “cull or treat” strategy is due to the considerable decrease in the prevalence of Chlamydia.
As expected, the proposal received considerable attention and was scrutinized by the public. Some argue that it is inhumane, while others suggest alternative management strategies. However, when it comes down to it, the science is clear. Euthanizing can be done in a humane way, and it is the most effective method for conservation of the species. The only real alternative to culling is treatment with antibiotics, which is costly, requires an immense amount of monitoring, and has been shown to take much longer to eliminate the disease and increase population sizes.
The question we must ask ourselves is: we cull other species, so why not koalas? For instance, in the United States, the culling of four million cattle successfully prevented bovine tuberculosis from spreading to humans. Even when based on sound scientific research, culling has always been dismissed as a management option for the iconic Australian marsupial. In 1997, culling was suggested as a method to protect the overabundant koala population on Kangaroo Island, but sterilization and relocation was used instead. It is amazing that a program that was significantly more expensive and less effective was chosen because the public could never think of killing the adorable and innocent koala.
Managing koala populations is clearly a case in which science intersects with emotion. However, it is essential that we put our emotions aside, and make a decision that is based on scientific evidence. Let us remember that the study only suggests culling or treating 10% of the population each year, which is equivalent to approximately 140 koalas. It is also important to improve the communication of science to the public. It needs to be made abundantly clear that without culling, the koala populations will continue to decrease.


To read the full article visit: http://www.bioone.org/doi/full/10.7589/2014-12-278 

References:

Oliver, M. (2015, October, 20). Proposal to euthanise koalas with chlamydia divides experts. The Guardian. Retrieved from: http://www.theguardian.com/world/2015/oct/20/proposal-to-euthanise-koalas-with-chlamydia-divides-experts.

Olmstead, A.L., & Rhode, P.W. (2004). An impossible undertaking: The eradication of bovine tuberculosis in the United States. Journal of Economic History, 64, 734-772.

Rhodes, J.R., Ng, C.F., de Villiers, D.L., Preece, H.J., McAlpine, C.A., & Possingham, H.P. (2011). Using integrated population modeling to quantify the implications of multiple threatening processes for a rapidly declining population. Biological Conservation, 144, 1081–1088.

Wilson, D., Craig, A., Hanger, J., & Timms, P. (2015). The paradox of euthanizing koalas to save populations from elimination. Journal of Wildlife Diseases, 51, 833-842.


Wednesday, July 8, 2015

Taking stock of exotic species in the new wild: Acknowledging the good and the bad.*

Are exotics good or bad? They are neither. They just are. But some exotics cause harm and impede certain priorities, and debates about exotics often ignore reality.

Book review: Fred Pearce. 2015. The New Wild: Why Invasive Species Will Be Nature’s Salvation. Beacon Press

There has been much soul-searching in invasion biology, with attacks, and subsequent rebuttals, on the very nature of why we study, manage and attempt prevent the spread of exotic species (Davis et al. 2011) (Alyokhin 2011, Lockwood et al. 2011, Simberloff 2011). What is needed at this juncture is a thoughtful and balanced perspective on the nature of the discipline of biological invasion. Unfortunately, the book “The New Wild” authored by Fred Pearce, is not that balanced treatment. What is presented in this book is a very one-sided view, where counter-evidence to the thesis that exotics will save nature is most often overlooked, straw men are erected to aid in this goal, and the positions of working ecologists and conservation biologists are represented as simplistic, anachronistic or just plain incorrect.

What Pearce has written is a book-long argument about why exotics shouldn’t be feared, but rather embraced as a partial solution to anthropogenic land use change. I do not wish to undermine the reality that exotics can play important roles in urban landscapes, or that some ecologists and conservation biologists do indeed harbour suspicions of exotics and subscribe to unrealistic notions of purely native landscapes. Exotic policy is at the confluence of culture, science, economics and politics, and this is why the science is so valuable (Sandiford et al. 2014). For Pearce, the truth of what most ecologists do and think seems like an inconvenient reality.  There are a number of pervasive, frustrating problems with Pearce’s book, where bad arguments, logical flaws and empirical slight-of-hand obfuscate issues that desperately need honest and reflective treatment.

A monoculture of the exotic plant Vincetoxicum rossicum that spans open and understory habitats near Toronto, Canada (photo by M. Cadotte). This is a species that interferes with other management goals and needs to be actively managed.


There are major problems with ‘The New Wild’ and these include:

1) A premise built on a non sequitur and wishful thinking. The general premise of the book, that exotics represent a way out of our environmental doldrums, is myopic. Pearce’s reasoning seems to be that he has conflated “the world is not pristine and restoration is difficult…” with the alternative being that exotics are positive and “we should bring them on”. Certainly we can question exotic control efficacy, costs and conservation goals, but that does not mean that exotics are necessarily the solution.

      2)   Underrepresenting the observed effects of some invasive non-indigenous species. Pearce’s book is not balanced. The perceived benefits of exotics in this ‘New Wild’ are extolled while dismissing some of the problems that invasive ones might cause. He says that exotics typically “die out or settle down and become model eco-citizens” (p. xii). But there is a third outcome that Pearce ignores –they move in and become unruly neighbours. When he must acknowledge extinctions, he minimizes their importance. For example when discussing Hawaiian bird extinctions: “The are only 71 known extinctions” (p. 12 –italics mine), or with California: “But only 30 native species are known to have become extinct as a result [of exotics]” (p. 64 –italics mine).

He also implies throughout the book that exotics increase diversity because “Aliens may find new jobs to do or share jobs with natives.” (p. 113). The available evidence strongly suggests that the numbers of species inhabiting communities has not increased over time (Vellend et al. 2013, Dornelas et al. 2014). Which on the surface seems like a good thing, except that many communities are now comprised of 20-35% exotics. This means that there have been losers. Vellend and colleagues (2013) show that the largest impact on native species diversity has been the presence of exotics. So, they do not necessarily find new jobs, but rather outcompete some natives.

      3)   Conservation biologists and ecologists in the crosshairs. Pearce continually lauds those like-minded, outspoken advocates of exotics while belittling ecologists and conservation biologists who don’t agree with him. His disrespect for the process of science comes in two forms. First, he seldom considers evidence or presents opinions counter to his thesis. He gives a partial reason about this bias; he says that ecologists (except for those few brave pioneering souls) ignore novel ecosystems and the functional contributions of exotics (for example on p. 13). This is demonstrably false (see next section). Pearce has little affection for conservation biologists and mainstream ecologists. Both groups are disparaged and dismissed throughout the book. Conservation biologists get a particularly rough ride, and he never acknowledges the difficulty of their task of balancing multiple priorities: extinction vs. ecosystem function, habitat preservation vs. socioeconomic wellbeing, etc. For example, Pearce states: “Conservation scientists are mostly blind to nature outside of what they think of as pristine habitats and routinely ignore its value” –again a demonstrably false assertion.

In a particularly galling example, Pearce resorts to ‘guilt by association’ as an ad hominem attack to undermine the validity of opposing views. He links conservation with eugenics: “Many conservationists of the first half of the twentieth century were prominent proponents of eugenics” (p. 141). It would be equally valid to state that most journalists were proponents of eugenics in the first half of the twentieth century. Pearce, being a journalist, should see this as a specious argument at best.

Ecologists share in this odd and unfair derision. “Ecologists are tying themselves in knots because they refuse to recognize that these novel, hybrid ecosystems are desirable habitats for anything.” (p. 156). Unfortunately for Pearce, there are more than 4000 papers on ‘novel ecosystems’.

      4)   Misrepresenting modern ecology and conservation. Pearce attacks ecological science throughout the book and as an example Pearce makes observations about the role of disturbance and refusal to acknowledge this by ecologists “intent on preserving their own vision of balanced nature” (p. 144). However, disturbance has been a central component of community ecology for the past five decades. Because of this balance-of-nature view, Pearce says ecologists are not studying degraded, disturbed or recovering systems. For example, with secondary forests, he says: “Yet the blinkered thinking persists. Degraded forests and forests in recovery are almost everywhere under-researched and undervalued.” (p. 157). Yet there are almost 9,500 papers on secondary forests –highlighting the ecological interest in these widespread systems. There are numerous such examples.

      5)   A black and white, either-or dichotomy.  What Pearce provides is a series of stark dichotomies with little room for subtle distinction. He ties resilience and ecosystem wellbeing to the arrival of exotics, without adequately assessing the drawbacks: “Nature’s resilience is increasingly expressed in the strength and colonizing abilities of alien species …we need to stand back and applaud” (p. xii).

Invariably in ecology, debates over ‘either/or’ dichotomies end up with the realization that these dichotomies are endpoints of a continuum. This is exactly the case with exotics. Are they bad or good? The answer is neither. They just are. Some exotics species provide economic opportunity, ecosystem services and help meet other management goals. Some exotics cause harm and impede certain priorities. Modern management needs to be, and in many cases is, cognizant of these realities.

 References
Alyokhin, A. 2011. Non-natives: put biodiversity at risk. Nature 475:36-36.
Davis, M. A., M. K. Chew, R. J. Hobbs, A. E. Lugo, J. J. Ewel, G. J. Vermeij, J. H. Brown, M. L. Rosenzweig, M. R. Gardener, and S. P. Carroll. 2011. Don't judge species on their origins. Nature 474:153-154.
Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers, and A. E. Magurran. 2014. Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science 344:296-299.
Lockwood, J. L., M. F. Hoopes, and M. P. Marchetti. 2011. Non-natives: plusses of invasion ecology. Nature 475:36-36.
Sandiford, G., R. P. Keller, and M. Cadotte. 2014. Final Thoughts: Nature and Human Nature. Invasive Species in a Globalized World: Ecological, Social, and Legal Perspectives on Policy:381.
Simberloff, D. 2011. Non-natives: 141 scientists object. Nature 475:36-36.
Vellend, M., L. Baeten, I. H. Myers-Smith, S. C. Elmendorf, R. Beauséjour, C. D. Brown, P. De Frenne, K. Verheyen, and S. Wipf. 2013. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences 110:19456-19459.

 *This post is a synopsis of my book review in press at Biological Invasions