Showing posts with label conservation. Show all posts
Showing posts with label conservation. Show all posts

Monday, December 21, 2020

Bright Goes North

Guest post by Kate Davies, a recent MEnvSc Graduate from the University of Toronto-Scarborough


She could feel the pull in her body. It was time.

She had done this journey before, but even the first time it felt familiar. Like a memory that she was born with.

She was called Bright because she was known by the others for her deeply golden tail feathers and her clear eyes. Bright was late leaving her winter home this year, and many of the others had left already, departing at the first signs of change. The air had started to feel heavy signaling that the rains would come soon. She had to start north before daybreak. Bright hopped around the tree canopy from branch to branch. She dropped her wings by her sides and fanned her tail to spook the insects and quickly grab them in her beak. She had spent her winter in brushy scrubland that was not the best feeding grounds, but she was older now and had less energy to defend her place in the boggy wetlands filled with ripe insects. She ate her fill before she spread her wings and started to carry her small light body out over the immense open waters. Crossing the gulf was frightening the first time, but she knew even on her first trip that the sky would end, and she would see green again. She traveled in a loose flock with some other Redstart females, some yearlings and others Bright knew from previous flights. She hoped some of her daughters were here, now grown she would not have known their calls. The males always left first; they would meet them in the northern home.

Illustration by Kate Davies

The journey across the gulf lasted into the night, the winds were not favourable this year. Bright and the others she travelled with were weak and needed to eat. There was a wetland they had visited as a stop every year, but Bright was worried they had taken a wrong turn. This was the right place but there was not water, few plants, and it had been filled with stone, humans and a glowing hum. It seemed as she flew north every year there were more angular stone forests filled with humans. Some could tolerate these stone forests but Bright and her companions preferred trees and grass. The birds who lived there like pigeons and house sparrows spoke a different language than the other birds she knew, and some said they came across the water bigger than the gulf. So, despite their exhaustion the females kept flying until they could find somewhere to eat and sleep. They had to settle for an area where the plants all grew in rows, a farm, but there was a river and some insects so it would do for today. These human places had different dangers and predators than in the forests and fields. Bright knew to be cautious of owls, hawks and snakes but where there were humans, other dangers were lurking. They were too tired to find anywhere else to sleep. Bright noticed that her party had shrunk by a few - some were so tired they may have rested in the stone forest. Bright hoped the others would be alright and would catch up to the group.

They travelled for a few more days, finding quiet places to rest. They avoided the stone forests as much as they could with their bright lights, constant noises and hums. They rested at another farm on the fifth night. Bright and her companions were huddled in a dense thicket of bushes near a field and river. They had fallen sound asleep for the night. In the nearby tall grasses, a pair of green eyes shone in the moonlight. A barn cat had been stalking the birds, she moved quietly, softer than the wind. The cat slinked under the low branches of the bush without a sound and spotted a bird on a low branch she could easily reach.  Bright opened her eyes to see one of the yearlings was in the cat’s fangs - she was lost. Bright and her companions moved to another row of bushes closer to the stream, they were all shaken and tired. Fear and anxiety overtook the small flock, they didn’t sleep anymore that night. Bright was relieved when the sun crept over the horizon and they could continue northward.

Illustration by Kate Davies

The air was warm, and they had been lucky that there were no storms along the way. They started to see some males that day, and a few of her companions ended their journey to find a mate. Bright continued her northward flight as did most of the females until they made it over the big lake. It was not as big as the gulf, but it could be dangerous, as there were many humans and stone forests around the water. There were predators near every shore, some had been here all winter and were eager for the small songbirds to return so they could fill their bellies.

Since Bright had left late this year, she was eager to build a nest and find a mate. She decided to end her journey on an island at the north shore of one of the long lakes. Most of the others continued north. She was near a stone forest but on an island that was far enough away that the sound of the waves drowned out the hum and noise. It was the time of year where the air was filled with song from many different birds. She fluttered around the island listening for males of her kind, trying to find one who sang strong and clear. She followed a song to a male high up in a red maple tree. In her mind she identified him as Flicker - he was very expressive in the way he flicked his tail. He took her to the sites he had scouted for nesting to see if she approved of any. She was happy that she would be his first and maybe only mate, which would afford her more protection. She picked the third site he showed her. It was a dense area of red dogwood that was covered in fresh young leaves. They were close to a pond in an area rich with insects. She started to gather twigs and build her nest there while Flicker stayed close singing to warn others away from his mate and territory. Together they had four eggs and Bright was happy with her clutch size; it was more than last spring. She left the nest to find some food in early morning and Flicker guarded the eggs. She was chasing a particularly acrobatic fly though the bushes when suddenly a great force stopped her flight and she fell to the ground. She could feel and taste the warmth of blood in her mouth, her beak was fractured, her head pounded, and she could not catch her breath. She had only seen branches before her, it was like a reflective pond in the air made of stone. Bright wanted to live, she wanted to get up go back to Flicker and the young. She could not move; she let out her last breath and died.

The new gardener came around back of the building to trim the forsythia that was long overgrown. At the base of the bush under the window lay a female American Restart, she was dead. The garden gasped and cried out ‘Oh no!’ Another window strike, this was the sixth one this month and perhaps it would encourage management to finally birdproof the windows, thought the gardener. She buried the bird in the garden with a tear for its loss of life and trimmed the forsythia. On her break she reported the window strike on the Fatal Light Awareness Project (Flap) website and continued her duties.

Flicker realized that Bright would not return - what had become of her? He could not care for the babies alone. He would have to leave them. He sung a mournful song for Bright and flew off in search of a new mate hoping that it wasn’t too late.

 

 

Further Reading and References

Further reading: Online resources

The Cornell Lab - All about birds – American Redstart

Overview: https://www.allaboutbirds.org/guide/American_Redstart/overview and

Species account: https://birdsna.org/Species-Account/bna/species/amered/introduction

Toronto and Region Conservation Authority. The American Redstart: A Bird On the Rise In the GTA https://trca.ca/news/the-american-redstart-a-bird-on-the-rise-in-the-gta/

Boreal Songbird initiative. A guide to boreal birds https://www.borealbirds.org/bird/american-redstart

Ontario Nature. Migratory Birds https://ontarionature.org/campaigns/migratory-birds/

North American Birds Declining as Threats Mount By Mel White for National Geographic https://www.nationalgeographic.com/news/2013/6/130621-threats-against-birds-cats-wind-turbines-climate-change-habitat-loss-science-united-states/

Birdwatchers Digest. Your Bird Questions Answered: Flight and Migration https://www.birdwatchersdigest.com/bwdsite/connect/youngbirders/your-bird-questions-answered-flight-migration.php

 

 Further reading: peer reviewed literature

Cohen, E. B., Rushing, C. R., Moore, F. R., & Hallworth, M. T. (2019). The strength of migratory connectivity for birds en route to breeding through the Gulf of Mexico. Ecography, 42(4), 658–669. https://doi.org/10.1111/ecog.03974

Cooper, N. W., Sherry, T. W., & Marra, P. P. (2015). Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird. Ecology, 96(7), 1933.

Hill, G. E. (2004). A Head Start for Some Redstarts. Science, 306(5705), 2201–2202.

Germain, R. R., Marra, P. P., Kyser, T. K., & Ratcliffe, L. M. (2010). Adult-Like Plumage Coloration Predicts Winter Territory Quality and Timing of Arrival on the Breeding Grounds of Yearling Male American Redstarts. The Condor, 112(4), 676–682. https://doi.org/10.1525/cond.2010.090193

Norris, D. R., Marra, P. P., Bowen, G. J., & Ratcliffe, L. M. (2006). Migratory connectivity of a widely distributed songbird, the American Redstart (Setophaga ruticilla). The Auk, 123(4), 14.

Norris, D. R., & Marra, P. P. (2007). Seasonal Interactions, Habitat Quality, and Population Dynamics in Migratory Birds. The Condor, 109(3), 535–547.

Marra, P. P., & Holmes, R. T. (2001). Consequences of Dominance-Mediated habitat segregation in American Redstarts during the nonbreeding season. The Auk, 118(1), 92–104.

McKinnon, E. A., Stanley, C. Q., & Stutchbury, B. J. M. (2015). Carry-Over Effects of Nonbreeding Habitat on Start-to-Finish Spring Migration Performance of a Songbird. PloS One, 10(11), e0141580.

Morris, S. R., & Glasgow, J. L. (2001). Comparison of spring and fall migration of American Redstarts on Appledore Island, Maine. The Wilson Bulletin, 113(2), 202.

Smith, R. J., Mabey, S. E., & Moore, F. R. (2009). Spring Passage and Arrival Patterns of American Redstarts in Michigan’s Eastern Upper Peninsula. The Wilson Journal of Ornithology, 121(2), 290–297. https://doi.org/10.1676/08-051.1

Wuethrich, B. (1998). Songbirds Stressed in Winter Grounds. Science, 282(5395), 1791–1794.

 

 


Wednesday, December 9, 2020

Targeting Biodiversity Conservation: A Post-2020 World

Guest post by Connor Kendall, recent MEnvSc graduate from the University of Toronto-Scarborough


The world is currently in the midst of the sixth mass extinction where global vertebrate populations have declined by 60% over the past 40 years and human pressures are impacting a vast 75% of the Earth’s surface1. If we continue along the path of business-as-usual, we will have a lot more to be concerned about than just living underwater in the next 30 years. If we lose most of the world’s pollinators, 40% of which are facing extinction1, you can say goodbye to your avocado toast and pumpkin spice lattes. If bats continue along their current trajectory and become extinct, you can say hello to endless summer nights with countless mosquito bites. This is why we need global action towards conserving, restoring and sustaining biodiversity, which is exactly what the Aichi Biodiversity Targets hoped to accomplish back in 2010.

Source: UNDP (2013). Charting pathways for biodiversity and sustainable development (retrieved from: https://www.slideshare.net/equatorinitiative/charting-pathways-for-biodiversity-and-sustainable-development)

At the 10th meeting of the Conference of the Parties in 2010, the Strategic Plan for Biodiversity 2011-2020 was implemented and the 20 internationally agreed upon Aichi Biodiversity Targets were formulated. The goal of this plan was to “take effective and urgent action to halt the loss of biodiversity” by 2020. The years have since gone by and it is now 2020, so what does that mean for the targets and biodiversity conservation? We are still experiencing unprecedented species declines – and despite global commitments towards achieving these targets, as a whole – we fell short and a lot still remains to be done. There is no point dwelling on the past but rather, it is important to learn from our failures and look to the future in order to adapt and create revised targets. We need to refocus our efforts, now more than ever, so that we can transform our relationship with nature and save the things we hold dear (even if that is just avocado toast).

Before we can look to the future, we must first look to the past. Where did we fall short? What can we learn from our failures? Did we miss something? These are the questions that need to be answered if we want to succeed in the future. In writing this blog about the past and future of International Biodiversity Targets, I hope to draw attention to the issue of biodiversity loss and highlight the importance of not only creating these targets but also achieving them, in the years to come.

Where did we go wrong?

It’s been 10 years since the 20 Aichi Biodiversity Targets were agreed upon and we have fallen short of almost all of them. The targets have been criticized for being too ambiguous leaving room for interpretation, not being quantifiable enough making it difficult to track progress, and not being binding which allowed countries to create individualized targets that don’t meet the global targets. Together, these may be a couple of the reasons why we have failed to meet the majority of the goals globally.

Let’s take a look at Aichi Target 11 which is one of, if not the most, talked about target. Target 11 falls under the Strategic Goal C and states:

 

“By 2020, at least 17 per cent of terrestrial and inland water, and 10 per cent of coastal and marine areas, especially areas of particular importance for biodiversity and ecosystems services are conserved through effectively and equitably managed, ecological representative and well-connected systems of protected areas and other effective area-based conservation measures, and integrated into the wide landscapes and seascapes.”

 

As far as the target itself goes, it is one of the most quantifiable and easily tracked targets, providing exact percentages of area that must be conserved. It is specific and uses unambiguous language, providing clear guidance on how to achieve the target. Areas must be ecologically “representative”, “well-connected” and “effectively and equitably managed”. Seems fairly straight-forward, right? Wrong. Because the Aichi Biodiversity Targets are not binding and act more as a guide than a hard-and-fast rule, different government agencies can take these “guidelines” and adjust them into what works for them. For example, in 2015 (five years after the original targets were imposed) Canada came up with their own 2020 Biodiversity Goals and Targets, giving them just a couple of years to make any real progress. The issue with these targets is that they removed a lot of the meat from the Aichi Targets, solidifying the dreary fate of biodiversity. For comparisons sake, let’s take a look at Canada’s Target 1, to see just how Aichi Target 11 was altered:

 

“By 2020, at least 17 percent of terrestrial areas and inland water, and 10 percent of coastal and marine areas, are conserved through networks of protected areas and other effective area-based conservation measures.”

 

What was once 62 words has been condensed down to 32. The main idea of the target and the percentages are still there however, it leaves out the idea of conserving ecologically representative areas that are effectively and equitably managed. By removing these ideas, Canada made a more ambiguous target and set themselves up to achieve the target in all the wrong ways. And Canada is not alone.

The Protected Planet issued a report in 2018 and have since updated it with information from February 2020. According to this report, 15.1% of the global terrestrial area and 7.9% of the global marine area have been conserved. 

Source: UNEP-WCMC and IUCN (2020). Protected Planet: The World Database on Protected Areas (WDPA), February 2020 version (retrieved from: https://livereport.protectedplanet.net)

Looking at these numbers, it seems like we are heading in the right direction but, when you dive further you notice that is not the whole picture. Remember in the Aichi Target 11 when it specified the areas needed to be “representative”, “well-connected” and “effectively managed”? The Protected Planet Digital Report looked at the percentage of areas that are conserved that meet each of these criteria and this is what it found: 5% of terrestrial areas and 1% of marine areas are effectively managed, 9% of terrestrial areas are ecologically representative, and 7% of terrestrial areas are well-connected.

Source: UNEP-WCMC and IUCN (2020). Protected Planet: Aichi Target 11 Dashboard (retrieved from: https://www.protectedplanet.net/target-11-dashboard)

Because the countries had the ability to adapt the Aichi Targets to suit their needs, it left too much room for ambiguity and inadequacy, ensuring that by 2020, there was nothing the world could do but fall short. It is important when we look to the future of biodiversity conservation that we consider the mistakes from the last 10 years and learn from them to ensure biodiversity is around for the generations to come.

What does the future look like?

The future remains uncertain but what is certain, is the need to act now. Many believe that new targets must be SMART (specific, measurable, attainable, relevant, time-based), should integrate scientific research where applicable, and involve progressive steps and actions similar to a roadmap for achieving the targets.

Negotiations have already been underway and governments have given themselves two years to develop a post-2020 framework that is to be presented at the 15th Conference of the Parties, at the UN Biodiversity Conference in 2020 in Kunming, China. An open-ended intersessional working group, under the leadership of Mr. Francis Ogwal of Uganda and Mr. Basile van Havre of Canada, has already published the Zero Draft of the Post-2020 Global Biodiversity Framework as of January 13th, 2020. The framework hopes to provide both the context and structure required to allow diverse stakeholders to communicate and work together towards the common goals.

The zero draft looks to the next decade and identifies a 2030 Mission:

 

“To take urgent action across society to put biodiversity on a path to recovery for the benefit of planet and people.”

 

The post-2020 framework also proposes 20 new biodiversity conservation targets. What is interesting about the proposed targets is that there are similarities to the original Aichi Targets and it is evident that the working group considered the mistakes that were made and learned from them when drafting the new ones. For example, the second proposed target mirrors Aichi Target 11 and ups it by creating the more ambitious proposed Target 2:

 

“Protect sites of particular importance for biodiversity through protected areas and other effective area-based conservation measures, by 2030 covering at least [60%] of such sites and at least [30%] of land and sea areas with at least [10%] under strict protection.”

 

The target not only identifies higher percentages of area protected, but also offers up the condition of “strict protection” which was not included in the original Aichi Target 11.

It is also evident in the new proposed targets that the working group listened to the public over the past decade and tried to incorporate issues that people care about like plastic waste in proposed Target 4, climate change mitigation and adaptation in proposed Target 6, and the sustainable use of wild species in proposed Target 7. In order to stand a chance of reaching the goals by 2030, it is clear that the public needs to be engaged with these targets, and what better way to do it than include things that people are already passionate about.

The Zero Draft of the Post-2020 Global Biodiversity Framework is promising and it has huge potential to have a ripple effect in many countries, but there are some things that need to be reviewed and reconsidered before that can happen. Some of the targets remain to be unquantifiable, such as the proposed Targets 16 and 17. At the very least, the working group should consider including some guidelines as to how to achieve and track these targets, to ensure they do not get lost and forgotten alongside some of the “bigger ticket” targets.

Any new framework that is implemented will have its highs and lows, but to ensure the 2030 Mission and Targets are achieved in the best way possible, it is important that the new framework works on strengthening the existing Aichi Targets, progress and initiatives that are underway and learn from them, as well as have stricter guidelines in place to avoid the ambiguity and inadequacy that came about from the Aichi Targets.  

All hope is not lost, but much still remains to be done. Now, more than ever, we need a drastic shift in the way biodiversity is viewed and valued in order to stand a chance of putting an end to the sixth mass extinction and the post-2020 framework is a step in the right direction.

 

1.     WWF (2018). Living Planet Index. Retrieved from: https://www.worldwildlife.org/pages/living-planet-report-2018 



Thursday, December 3, 2020

Politics and the biodiversity crisis: a call for scientists to be politically engaged

I am a politics junkie. I am genuinely fascinated by politics and political systems, despite their irrational and often ineffective nature. Yet the world is awash with existential crises and solving them (or at least reducing the worst of their impacts) must come from the political systems that exist. So the question for biodiversity scientists is, how politically engaged do we need to be and how do we affect policy change regardless of the political party in power.There’s no doubt that science is more politicized, and polarizing, than ever, with general distrust in science and scientists increasing around the world (1). This declining trust comes from a combination of a lack of understanding of what science really is and the elevation and reinforcing of personal opinion from social media echo chambers, as evidenced by the rise of evidence-free conspiracy theories.

 

Past calls for scientists to become better communicators (2) has helped drive some scientists out of the ivory tower, but this increased visibility has minimally influenced public understanding, policy and discourse. Though there is an argument to be made that evidence-based policy and management in some sectors, like public health and ecosystem management, is undoubtedly better today than ten years ago. This lack of broad impact of scientists’ communicating is where we are at despite the many science communication courses now offered (3) and clearly better publicly engaged and more diverse scientists.

 

The core problem was never one of communication skills alone, rather, there has always been a political component that scientists need to engage with. We need to look no further than the disastrous COVID-19 response in countries like the United States or Brazil where highly respected infectious disease experts are thrown under the bus as soon as their advice deviates from political messaging. For example, a significant minority of Americans believes that Donald Trump knows more about viruses than Dr. Anthony Fauci, who has studied infectious diseases for decades with hundreds of papers published and which have been cited more than 200,000 times!


So, what should scientists do? Simply, they should be more politically engaged. Which sounds antithetical to our notions of objectivity and dispassionate advocacy. But I believe we can be politically engaged and retain this dispassionate objectivity.

 

But let me be clear, being politically engaged does not mean being political or a partisan. In fact, I champion being politically engaged while eschewing partisan politics -see my belief disclaimer[i]  and experience biases disclaimer[ii] at the end of this post.

 

Biodiversity scientists, who care about evidence-based public policy need to find ways to inform and influence political systems so that species extinctions and biodiversity loss are prevented, and ecosystem health improved. During my time as a professor, I’ve engaged with politicians and politics at all levels. It’s been rewarding, interesting and eye-opening, though debatably effective. From this experience, here are some suggestions about how to engage in political systems. 

1-Talk to politicians! You are an expert, and you were likely educated, employed and financed by public funds at some point in your career. You owe it to society and government to feedback into the system. I have met with politicians at all levels (municipal, provincial and federal) and from all the major parties that operate in Ontario, Canada. I have had some amazing experiences talking to interested and earnest politicians (I have had positive and unforgettable interactions with Kathleen Wynn [former Premier of Ontario] and Kirsty Duncan [former federal minister of science, and coincidentally a professor who taught me at the University of Windsor when I was an undergraduate]). I have also had some odd and frustrating conversations with other politicians. While I do talk all parties, I have found that representatives from the Conservative party here in Canada tend to have the strongest preconceived convictions without a firm understanding of science and fact, and they tend to be the most political; meaning that they are more likely to put their party or ideology over other concerns. Regardless of the specifics of any interaction, I believe that some of these conversations do have impact and at a minimum opens doors to more engagement.

 

2-Stay informed and share your thoughts. Being informed and knowledgeable allows you to speak to recent developments and make arguments germane in the current political landscape. This means being aware of legislative priorities and initiatives. Be aware of bills that are being proposed so you have time to talk to politicians and journalists. You should use different vehicles to discuss issues, whether that is with interviews or on social media. I have sat through legislative sessions in our provincial parliament in 2018, and the experience was mixed. On the one hand, I learned quite a bit about legislative processes and the priorities of the ruling party. On the other hand, I was very disappointed at the lack of serious thought and contemplation by members of the ruling party. It was all false praises of the Premier (I assume because their upward mobility depended on it) and a fundamental inability to provide meaningful answers or insights into decision-making. It reminded me of a bad movie about high school politics.

 

3-Don’t be partisan[iii]. Conveying science isn’t a partisan activity (even if some politicians attempt to make it so). Don’t use facts as a partisan attack, but do use facts to correct uniformed politicians or to criticize problematic legislation. For example, if a certain political party contains a substantial number of climate deniers or anti-vaxxers, don’t start your arguments by blasting their party. Rather, talk about the facts, and perhaps assume that there are other party members who are more open to facts and science and have good intentions. I realize that being non-partisan is more difficult in the United States where there are just two parties, but perhaps you should consider not registering yourself as a member of either party. Consider the fact that in the US, both parties have supported policies that favour economic growth over the environment and you should feel that either party has room to learn and grow. In Canada, avoiding party membership is much easier. I believe that a substantial proportion of Canadians will vote for different political parties in different elections (I have voted for three of our five main parties, plus small parties a couple of times). Under a million Canadians (out of 36 million) hold membership in a political party, so we are not an overly partisan country (and I hope it can stay that way, but the threat of right-wing populism is infecting our politics as it is elsewhere).

 

4-Run for office or support candidates. Ok, this one seemingly conflicts with #3, so we need to be careful here. There is something to be said for creating change from the inside. If you have the desire for public office, and being charismatic certainly helps, then pragmatism dictates you would need to run for a party. You shouldn’t say things you don’t believe, and you should be clear that you will prioritize science and evidence over party. And believe it or not, some parties would value this. Here in Toronto, since political parties are not permitted in our municipal elections, you can run or support candidates without any need to be a partisan. I canvassed for, and openly supported a friend who was elected as counsellor, Jennifer McKelvie. She holds a PhD in geochemistry and so brings not only a strong openness to science-informed policy, but has the credibility to lead on this front.

 

As I write this, the USA has a new President-elect who ostensibly supports science and evidence-based policies. Despite this, I argue that scientists should not rest on their laurels, but rather should engage with government. There are many many policy makers from your local ward all the way up to national levels and these people have a great diversity of viewpoints and understanding of science. Moreover, a more sympathetic administration does make it easier to engage and feel like your actions are having impact.

 

The final piece of advice is, and this is a very tough one for me personally, don’t get baited by the partisan trolls and nay-sayers. Some partisans don’t actually care about the truth or right and wrong, but rather view politics and policy making as a team sport, and any point they score is worth it. Rise above, state facts, point them to where they can learn more and offer advice on policy that makes sense.

 

 References

1.         L. McIntyre, The Scientific Attitude: Defending Science from Denial, Fraud, and Pseudoscience.  (The MIT Press, Cambridge, MA, 2019).

2.         S. J. Hassol, Improving how scientists communicate about climate change. Eos 89, 106-107 (2008).

3.         L. M. Kuehne et al., Practical Science Communication Strategies for Graduate Students. Conservation Biology 28, 1225-1235 (2014).

 



[i] A disclaimer. My political beliefs undoubtedly colour my perspective. I fully acknowledge that I am a militant non-partisan! I believe that political parties, by both their objectives and methods, are inherently anti-democratic. The main goal for any political party is the permanent consolidation of power; and the more power they have the more they use the tools and instruments of government to ensure they retain power. The voting public doesn’t seem to be overly concerned when the political party in power changes voting processes or electoral precinct boundaries to bias voting outcomes, especially when its ‘their team’. If we asked what made logical sense for a democracy, then there would be easy pathways to increase the number of parties (not clog those pathways), all votes would be of equal weight (why the heck is there still an electoral college in the USA?), governing bodies would be truly representative (i.e., proportional representation -we get majority government in Canada when one part gets 33% of the popular vote because of our riding system) and voters shouldn’t be restricted to selecting a single option (ranked voting works, at least when you have more than two real options). In reality, political parties might have outlived their usefulness. In Toronto, where I live, municipal elections do not permit official political party involvement, so we often have a dozen people running for counsellor in each ward and for mayor. This is the closest to true democracy as I’ve experienced.

 

[ii] Also, a second disclaimer. My understanding and views about politics are greatly shaped by political systems and governance in North America.

 

[iii] There is an important caveat here. For scientists in some countries, like for example in China, being a member of a political party is necessary in order to hold certain positions in academic institutions or government agencies.  


Monday, March 11, 2019

Life isn't all Rainbows and Butterflies...

Guest post by Carolyn Thickett, MSc. Candidate at the University of Toronto-Scarborough

Life isn't all Rainbows and Butterflies...

… especially in an age of extreme habitat loss, chemical pollution, invasions by alien species and climate change. All of these pressures are contributing to the dramatic decline of insects currently being observed all around the world.

In Canada, the general public is responding by trying to contribute their time and knowledge in any way that they can. Citizen Science programs encourage people with little or no previous experience to participate by working with staff from one of the conservation areas in the Greater Toronto Area. These programs are aimed at engaging the general public in conservation efforts for the purpose of education, but with the added benefit of reducing the cost of expensive conservation work.

Many more events are happening out of the public eye, not advertised, even held in secret. I attended one such event this past June, held in an undisclosed location, in Eastern Ontario. This was an invitation-only event, attended by a consortium of people concerned about the status of the Mottled Duskywing Butterfly in Ontario, spearheaded by butterfly enthusiast Jessica Linton.

Mottled Duskywing Butterfly. Photo: Carolyn Thickett


Dr. Gard Otis, a bee and butterfly researcher from the University of Guelph, is unveiling new
information about these specialist butterflies and their unique habitat requirements. The Mottled Duskywing depends on New Jersey Tea (Ceanothus americanus), a plant that is common to alvars as well as sandy soils supporting oak savannas, a critically endangered habitat in Canada. Land management issues related to the preservation and restoration of grassland habitats, such as oak savannas, must then be included in the Mottled Duskywing recovery strategy.

One of those issues is fire suppression, originally put into practice due to the inherent risk to
property and human lives. The suppression of fire over time promotes plant succession, which is the process by which grasslands turn into shrublands, then into thickets and eventually into forests. Succession is detrimental to New Jersey Tea. It is a grassland plant that requires full sun and is unable to compete with the increasing canopy density of a forest. But what if fire wasn’t suppressed? Wouldn’t New Jersey Tea burn too?



As it turns out, New Jersey Tea is not only tolerant of fire, but it produces vigorous growth shortly after a fire disturbance (Throop & Fay, 1999). So, there is a threatened population of butterflies… living in a rare habitat… and scientists are setting it on fire?? Yup. It’s called prescribed burning.

But how do the butterflies survive such a disturbance? Sites are burned in sections, creating a patchwork of habitat with some portions left for conditions required by the butterflies. Some research by Swengel and Swengel (2007) suggests that some permanent unburned areas within the landscape may be important for specialist Lepidopterans, such as the Mottled Duskywing and the Karner Blue Butterfly (Lycaeides melissa samuelis), which is extirpated in Canada. Additionally, fire can provide many benefits which can even outweigh the risks. Recent work by Henderson et al. (2018) shows the short-term positive effect on another grassland butterfly to prescribed fire regimes. The diagrams below illustrate the results of their study and show the positive benefit derived from regular, and even frequent, burns.



Dr. Otis and myself walked transects through specific locations within the landscape, recording the location of each Mottled Duskywing that we encountered, the quantity of New Jersey Tea plants and keeping tally of the totals. Dr. Otis’ study will examine how Mottled Duskywings respond to the prescribed burns by utilizing different portions within the landscape. The next prescribed burn will occur early next spring by property staff, then the butterfly populations will again be assessed and compared with the baseline data.

In addition, staff at the Cambridge Butterfly Conservatory are currently working on determining the caterpillar rearing requirements of a related species, the Wild Indigo Duskywing. At this point they have had success getting females to lay eggs in captivity and rearing the larvae. The knowledge gained with the Wild Indigo Duskywings will be applied to the Mottled Duskywings, working towards reintroduction to one or more sites where they used to occur within the province, perhaps as early as 2020.

The Mottled Duskywing butterfly population we surveyed is the largest in Canada. At the end of the count, we received word that 4 teams of observers recorded 210 butterflies. This was great news for the researchers as the population appears to be stable, although the true population can only be determined through a detailed mark-recapture study which is tentatively being planned for summer 2019.

Mottled Duskywing conservation is gaining momentum… work has already started on habitat recovery and caterpillar rearing protocols. The information gathered and recovery actions taken could have implications for many other native prairie and grassland species. The same can be said for every other count, assessment, or restoration event. Whether you are a researcher or a concerned citizen, get involved. Know that your efforts could have massive implications for biodiversity, you could even SAVE a species from extinction!

To get involved in conservation, visit citizen science.

For more information on Mottled Duskywing butterflies, read the recovery strategy.

References

Fickenscher, J.L., Litvaitis, J.A., Lee, T.D. & Johnson, P.C. Insect responses to invasive shrubs:
Implications to managing thicket habitats in the northeastern United States. Forest Ecology
and Management 322 (complete), 127-135 (2014).

Henderson, Richard A., Meunier, Jed, & Holoubek, Nathan S. Disentangling effects of fire,
habitat, and climate on an endangered prairie-specialist butterfly. Biological Conservation 218
(complete), 41-48 (2018).

Swengel, A. B. & Swengel, S. R. Benefit of permanent non-fire refugia for Lepidoptera
conservation in fire-managed sites. Journal of Insect Conservation 11, 263–279 (2007).

Throop, Heather L. & Fay, Philip A. Effects of fire, browsers and gallers on New Jersey tea
(Ceanothus herbaceous) growth and reproduction. The American Midland Naturalist 141 (1),
51 (1999).

Friday, December 7, 2018

Into the Eye of the Elephant Storm: Poaching in Africa’s Last Great Elephant Refuge

Guest post by Adam Byers, MEnvSc Candidate at the University of Toronto-Scarborough

It’s hard to put into words the feeling you get gazing up into the gentle, intelligent eyes of a 5-tonne African elephant. But that’s exactly where I found myself six months ago, deep within the borders of Botswana’s Chobe National Park.

Two members of a small bachelor herd in Chobe National Park, Botswana

I was nearing the end of a camping safari across the grasslands of southern Africa, and just when I thought it wasn’t possible to top the incredible wildlife I’d already experienced, Africa proved me wrong in a surreal heart-stopping moment. A towering young bull elephant emerged from the bush and passed by our jeep close enough to touch. It’s the kind of experience you never forget. But it’s an experience that may soon cease to be possible.

The African bush elephant is a threatened species as designated by the IUCN (Blanc, 2008), the global organization that assesses at-risk wildlife. Tracked since 1986, the species is currently listed as “vulnerable”, and recent trends suggest populations are in decline (Chase et al., 2016). Making matters worse, this year elephant conservation was dealt a devastating blow that is already having major consequences: in May, the new president of Botswana revoked the country’s zero-tolerance policy on poaching and stripped the weapons from Parks officers. Mere weeks later, the place of my elephant encounter was transformed into a scene of destruction and violence. By September, surveys carried out by the charity Elephants Without Borders found 87 dead elephants killed for their tusks.

Botswana supports among the densest populations of elephant in Africa (from Chase et al., 2016)
Botswana is home to the world’s largest population of elephants, and has long been esteemed for its tough stance on poaching. A commentary released last year by researchers from the University of Botswana emphasized the nation’s shoot-to-kill order as responsible for reducing illegal hunting (Mogomotsi & Madigele, 2017), which is a leading cause of elephant mortality, particularly for tusked males (CITES, 2017). The belief was widespread, shared with me by guides and park staff from Zimbabwe to South Africa, who lauded Botswana’s approach. So it’s no wonder the policy reversal was met with international outrage, which only intensified with the discovery of dozens of poached elephants in the Chobe park and other protected areas.

The government denied the claims, insisting the numbers were much lower, but in a continent still rife with corruption it is difficult to know who to believe. But whether it’s one elephant or one hundred, the harm is unacceptable. And the fact that it followed so closely after the disarmament of the country’s anti-poaching unit can be no coincidence.

Further investigation, however, shows that despite the likely connection, the government may have done no wrong. The shoot-to-kill policy was never official legislation, and as I was warned during my adventure, there were no real criteria before escalating to violence – simply being in a protected area after dark was sufficient for guards to open fire. This led to several years of clashes between anti-poaching units and citizens of neighbouring nations.

Proportion of illegally killed elephants (PIKE) from 2003 to 2016; the red line represents the level at which half of all deaths are due to illegal hunting or poaching (adapted from CITES, 2017)
Regardless of the controversies and merits of the former anti-poaching strategy, scholars are quick to point out that this sort of harsh response was only a band-aid solution. In an impoverished country ravaged by AIDS, inequality, and lack of clean water, poaching offers a high-risk but extremely tempting escape. Ivory values peaked at over $1,700 per kilo (CAD) in 2015, and with a pair of adult male tusks weighing up to 90kg, a single elephant could represent a lifetime’s salary. The price of ivory has decreased since China’s ban earlier this year, but with a thriving black market trade, and U.S. President Trump reversing a ban on ivory imports, the world is far from a cohesive anti-poaching strategy.

Given the lucrative market, it’s no wonder that a sophisticated system of poachers has descended on the country, especially now that the risk is reduced. But as one ranger in Botswana explained, these poachers are not necessarily bad men. They are sons and brothers. Husbands. Fathers.

If we want to fix the poaching problem, we need to dig deeper for a solution. We need alternative livelihoods for the marginalized men that are turning to poaching in order to provide for their families. Conservation and humanitarian NGOs operating around the world have long tried to implement programs to encourage alternate sources of food and income, but unfortunately few of these programs have had adequate funding or infrastructure to measure the results. To assess whether conservation benefits were being achieved, the IUCN conducted interviews as part of an enlightening assessment of 15 alternative livelihood projects in Central Africa (Wicander & Coad, 2015). In many cases funding was inadequate to meet program targets, and the majority lacked sufficient monitoring to measure progress. These findings were echoed in a systematic review conducted by Dilys Roe and colleagues (2015). The authors found only 21 studies that adequately assessed conservation outcome of alternative livelihood projects, only a third of which were from Africa, and none of those specifically dealt with poaching. Scientists are often quick to raise problems, and usually to suggest solutions, but there is also a need to follow through to determine whether those solutions are working. There is a clear gap that needs to be addressed to determine which interventions are effective at both reducing poaching and meeting socioeconomic goals, and researchers and NGOs must work together to ensure adequate funding is available for such programs.

In the last days of my trip I visited a local primary school where I had the opportunity to meet both students and teachers. Despite its troubles, Botswana is a fast-advancing nation and a leader in education among its peers. Their children today have more choice and freedom than ever before, and it is up to them to set the course for the world’s last great elephant refuge. And I have no doubt they will succeed if we just give them the opportunity, because like their gentle giant neighbours, they are kind and enthusiastic. Thoughtful. Intelligent.
To see it, you just need to look into their eyes.

Photo by Adam Byers
Much of the information in this posting is taken from first-hand experiences and conversations in Botswana and neighbouring nations. For fuller appreciation of the complexities of the issue, I recommend reading the news articles linked above and the referenced studies and documents below. For more on endangered elephant populations or to find out how you can help, visit the IUCN or World Wildlife Fund.


References
Blanc, J. (2008). Loxodonta africana. The IUCN Red List of Threatened Species 2008. International Union for Conservation of Nature and Natural Resources.

Chase, M. J., Schlossberg, S., Griffin, C. R., Bouché, P. J., Djene, S. W., Elkan, P. W., ... & Omondi, P. (2016). Continent-wide survey reveals massive decline in African savannah elephants. PeerJ, 4, e2354.

CITES. (2017). MIKE Report: Levels and Trends of Illegal Killing of Elephants in Africa to 31 December 2016 - Preliminary Findings. Convention on International Trade n Endangered Species of Wild Fauna and Flora.

Mogomotsi, G. E., & Madigele, P. K. (2017). Live by the gun, die by the gun: Botswana’s ‘shoot-to-kill’policy as an anti-poaching strategy. South African Crime Quarterly, 60, 51-59.

Roe, D., Booker, F., Day, M., Zhou, W., Allebone-Webb, S., Hill, N. A., ... & Shepherd, G. (2015). Are alternative livelihood projects effective at reducing local threats to specified elements of biodiversity and/or improving or maintaining the conservation status of those elements? Environmental Evidence, 4(1), 22.

Wicander, S., & Coad, L. (2015). Learning our Lessons: A Review of Alternative Livelihood Projects in Central Africa. International Union for Conservation of Nature and Natural Resources.

Friday, November 30, 2018

Un-BEE-lievable: The Buzz on Native Bee Conservation in Canada

Guest post by University of Toronto-Scarborough MEnvSc Candidate Rachel Siblock

Unless you’ve been living under a rock (much like native mining bees in Canada), you’ve probably seen the numerous campaigns to “Save the Bees”. Bee species across the globe are in decline. There are many factors that contribute to this decline, such as pesticide use, colony collapse, disease, habitat loss, and climate change1. Many of these factors interact with one another, exacerbating the consequences and impacts. Conservation efforts are being implemented to try to stop the loss of these pollinators, and the valuable services they provide to humans. Canada is no exception. There are local, provincial, and national policies and programs operating and currently being developed in order to reduce the impacts of these threats. In the past few years, programs like The Bee Cause, Bees Matter, Feed the Bees, and others have implemented programs and recommendations in order to increase the bee populations in Canada. Honey Nut Cheerios has even campaigned to get the public engaged and involved in the conservation of bees. These programs, however, all have one common issue: they focus their efforts on Honey Bees. 


An example of a campaign by Honey Nut Cheerios, focusing on honey bees. 
There are no native honey bees in Canada. The most well-known bee in Canada was not even present in the country until it was introduced from Europe in the 1600s2. The European Honey Bee was intentionally introduced to Canada for honey production, and since has increased in number dramatically, both in farmed and wild colonies. Honey bees have large colonies, allowing them to be easily managed and farmed. They also pollinate crops and produce honey, which may make them seem more economically valuable than their native, non-honey-producing counterparts. However, there have been unexpected impacts of the introduction of the European Honey Bee on native bee species in Canada.
            There are over 800 native bee species in Canada. While there are many different types of bees in Canada, the best understood group of native bees are bumble bees. Bumble bees have the ability to buzz pollinate, which allows them to obtain pollen from plants with pollen that is difficult to extract. Many of these plants are economically valuable, such as kiwi and blueberry crops. This, along with general pollination, makes managed populations of bumble bees worth several billion dollars annually3. Bumble bees naturally have low genetic diversity and can be subject to inbreeding depression, leading to declining populations and making the some species more vulnerable to extinction4. Threats can then interact with these low population levels, and intensify population loss. 
A male Rusty-patched Bumble Bee, one of Canada’s native bee species. It is currently listed as endangered in Canada.
Aside from facing the same threats as honey bees, native bumble bees are also threatened by the very presence of honey bees. Competition for resources with honey bees is a major threat to native bumble bees. A study performed in the United Kingdom found that bumble bees at sites with high honey bee density were significantly smaller in body size when compared to their relatives at sites with low honey bee density5. An additional study discovered a reduction of native bumble bee colony success when colonies were experimentally exposed to honey bees6. Honey bees generally produce larger colony sizes which can store a larger amount of resources than bumble bees. They also have the ability to communicate with one another about valuable floral resource locations7. Honey bees have a larger foraging range than native bumble bees, and have an increased ability to forage on introduced plant species7. These adaptations allow honey bees to outcompete native bumble bees, and commandeer sparse resources in the area.
            Threats from honey bees do not just end at competition; pathogens and parasites specifically adapted to honey bees have been shown to have the ability to spread to wild bumble bee populations. Managed honey bees are known to carry higher than natural levels of pathogens8, which can be transmitted to wild bumble bee populations when the bees interact. In particular, two pathogens endemic to honey bees, C. bombi and N. bombi, are wreaking havoc on bumble bee populations. While these pathogens do not have lethal effects, their sublethal effects can be devastating to colonies. These pathogens cause reduced pollen loads, a decline in flowers visited per minute, slower growth rates of colonies, decreased queen reproductive rates, shortened life spans and diminished colony growth8. With small populations already, entire bumble bee colonies can be wiped out by these pathogens. Honey bee parasites, such as the Small Hive Beetle, have also been shown to be able to spread to bumble bee colonies, where they consume the wax, pollen, and nectar stores of hives8. While honey bees have co-evolved with these parasites and pathogens for eons, bumble bees have not had the time to adapt to these threats, making them much more vulnerable to these hazards. 
Small Hive Beetle infestation in a honey bee colony. 
But why do we care about losing native bees? The same concerns about the loss of honey bees applies to native bees. Native bee species pollinate crops and flowers, which we depend on for food. It is estimated that about one in three bites of food we consume can be traced back directly to pollination by bees and other pollinators. However, native bees have been found to be more effective pollinators than honey bees. Some plant species in Canada rely solely on native bees for their pollination. With the loss of native bees, these plants will also become endangered, along with many other food crops requiring pollination. Additionally, there is a severe lack of research into native bees. Research tends to focus on honey bee populations, resulting in much more knowledge of honey bee behaviours, adaptations, actions, and responses to stressors. The truth is, we don’t know much about native bee species in Canada. We have no idea what the consequences of the loss of these species will be. However, this does not excuse us from protecting these bees. If anything, this lack of knowledge should increase our urge to protect them, so we have the opportunity to learn about them in the future.
            The native bee species in Canada share little life history traits with the European Honey Bee8, making many conservation efforts that focus on honey bees unsuccessful. Focusing conservation efforts on one species may not address the specific needs of native bees. In addition, by focusing on improving honey bee populations, there will be increased stress on native bees, which will lead to a decline in their populations. If we continue with these conservation strategies, we may threaten native species further.
            An increase in honey bee populations will increase parasite and pathogen levels in native bees, and also increase the competition between honey bees and native bees. So what can you do to focus conservation efforts on native Canadian bees? For starters, avoid the use of pesticides, which will decrease already low populations8. Improve your knowledge of bee species, and report invasive or introduced species in areas used by native bee species. Plant a wide variety of native plants with high pollen and nectar concentrations to ensure newly emerging bees have the resources they need to survive. And finally, avoid tilling, mowing, or burning in areas where native bee species, particularly ground dwelling species, are known to live. With increased knowledge of native bee needs, and species specific conservation efforts, it is hoped that native bee species will begin to rebound. Let’s BEE positive!

BEE Informed – To get involved with native bee conservation check out these links:


BEE-bliography:
    1.     Pettis, J.S., and K.S. Delaplane. 2010. Coordinated responses to honey bee decline in the USA. Adipologie 41:256-263.
    2.     van Engelsdorp, D., and M.D. Meixner. 2010. A historical review of managed honey bee populations in Europe and the United Sates and the factors that may affect them. Journal of Invertebrate Pathology 103:80-95.    
    3.     James, R., and T.L. Pitts-Singer. 2008. Bee Pollination in Agricultural Ecosystems. Oxford University Press, USA.
    4.     Zayed, A., and L. Packer. 2005. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proceedings of the National Academy of Sciences of the United States of America 102:10742-10746.
    5.     Goulson, D., and K. Sparrow. 2009. Evidence for competition between honey bees and bumble bees: Effects on bumble bee worker size. Journal of Insect Conservation 13:177-181.
    6.     Thomson, D. 2004. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458-470.
    7.     Goulson, D. 2003. Effects of introduced bees on native ecosystems. Annual Review of Ecology, Evolution, and Systematics 34:1-26.
    8.     Colla, S.R. 2016. Status, threats and conservation recommendations for wild bumble bees (Bombus spp.) in Ontario, Canada: a review for policymakers and practitioners. Natural Areas Journal 36:412-426.

Image Sources:
  1. https://bringbackthebees.ca
  2. https://inaturalist.com
  3. http://beeaware.org.au/archive-pest/small-hive-beetle/#ad-image-0