Showing posts with label scientific teaching. Show all posts
Showing posts with label scientific teaching. Show all posts

Wednesday, March 9, 2016

Debating limits on diversity in class

I wrote a while ago about the debate on whether global diversity has ecological limits, based on two papers from Harmon and Harrison, and Rabosky and Hurlbert. This was in turn based on a debate from the ASN meeting (aside: there should be more formal debates at conferences). I decided to try replicating this debate in the Advanced Ecology class I'm teaching with Kendi Davies, and I was pleasantly impressed with the outcome. The class is mostly upper year students and small (~25 people), and the focus is on reading the primary literature and exploring key topics in ecology using active learning techniques (e.g. 1, 2). Since we're reading about patterns and processes of diversity through space and time, the debate topic was fitting.

The debate was split over two classes - in the first, students were split into two groups and they prepared their opening and closing statements and their supporting arguments. I've tried having students use Google documents and slides for these kind of group collaborative activities, and it seems to work well. (This is in part because there are 'lender laptops' available from the department's IT, which means that all students can participate, even without owning a personal laptop). What is great about Google docs is that when anyone adds or removes or edits text, the other members of the group can see it in real time, which seems to encourage more students to be actively involved than if, say, a single student is taking notes. Each group decided who would present the opening statement, each supporting argument, the rebuttal statement, and the closing statement, and who would take notes and prep the rebuttal.

To raise the stakes a bit, the winning team would get a pass on one homework assignment (the other motivator presumably being fear of letting their group down). What impressed me was how engaged students were during prep and during the actual debate. (For example, during prep, students were watching videos on how to debate, and expressed some concerns about espionage by the other teams ;-) ) More seriously, they took the time to understand the arguments presented in the source literature, and went beyond that to integrate support from other primary literature. I think at times students (okay, most of us) can get away with skimming papers for the key points: this rewarded them for reading carefully and thoughtfully.
Current US political debates provided instruction
on what not to do (from

The judges were a few generous postdocs (motivated by the promise of free food), who not only scored the debates, but gave some feedback to the teams. Ironically, the winning team had argued that “Species Diversity Is Dynamic and Unbounded at Local and Continental Scales” (after Harmon and Susan Harrison), but the class was nearly unanimous that they personally felt that there likely were ecological limits on diversity.

What I would do differently next time:

  • Plan some redundancy - a couple of people were sick, etc, who had roles in the debate. This left team members scrambling a bit. 
  • Group sizes: 12 people is a bit big for a group and makes coordination difficult. It might be possible to have smaller groups and do 2 sets of debates. Or, alternatively, to assign half the class as judges (or press - another prof here uses students as press who have to prepare questions for the debaters).
  • Consider not randomly assigning people to groups - it might be better to try to balance teams.
  • Public speaking and argument logic - interestingly, most of the students have little experience in constructing convincing and well supported arguments. We talk a lot about hypothesis construction with STEM students, but persuasive speech and writing receive less attention. Things like 'signposting' important points could use more practice.

Monday, May 19, 2014

Guest Post: You teach science, but is your teaching scientific? Part 2: Flipping your class.

The second in a series of guest posts about using scientific teaching, active learning, and flipping the classroom by Sarah Seiter, a teaching fellow at the University of Colorado, Boulder. 

When universities first opened in the middle ages, lecturing was the most cutting edge information technology available to a professor - books were copied by hand so the fastest way to transfer information was to talk at your students (see the awesome TED talk below for a breakdown of how universities can and should change). Lecturing is still the default at most universities, and faculty spend hours developing their lecture skills. But studies have shown over and over again that lecturing is one of the worst possible ways to get students to learn. This means that our most accomplished scientists are working like crazy to master a method of teaching that is straight up medieval.
Lecturing isn’t going away any time soon, but you do a lot for your classes by incorporating active learning techniques, sometimes called “flipping” a class. The main feature of a flipped class is that students do the knowledge acquisition (the lecture-like) part of the course at home, and then do “homework” in the classroom with the instructor and peers to help them apply knowledge.

Flipped Classroom Fears:

Instructors often imagine a Lord of The Flies style scenario when they start flipping their classrooms, but this isn’t usually the case. In fact, most students are actually so conditioned to sit quietly in class that it can be difficult to get them to talk about the material. However, there are a few things you can do to get students in the frame of mind for productive discussion.
Flipping your classroom will probably not result­ in chaos. Nobody is going to smash the conch shell and kill Piggy, but they might learn something.
  • Start small: If you’re just getting into transforming your class, it can be helpful to start with something small, like flipping once a week.
  • Get extra staff: Since group work key to flipped classroom, it helps to have extra staff to facilitate peer discussions. If you have graduate TAs, consider deputizing them to lead group exercises. If your university has an undergrad TA program, get as many as you can and spend a day training them on how to ask good questions and facilitate conversations.
  • Explain to students why flipping works: Students will sometimes complain if they’re used to sitting passively in lecture, and they’re suddenly forced to do homework in class. But flipping builds skills that they’ll need in the workplace or graduate school, so reemphasizing what they’re gaining can help get them to buy in. 

Tools For Flipping: Case Studies

Case studies usually involve taking scientific data or ideas and then applying them to a real world situation (medical, law and business schools have been using them for years). Case studies are all over the internet, although the largest clearing house is the National Case Study Library (the American Museum of Natural History, the National Geographic Society, the Smithsonian, and the Understanding Evolution project at Berkeley also have great resources). The National Case Study Library is the largest and is searchable by topic and age, and includes teaching notes for each case, and can be a great place to get started.

Picking Case Studies: Some case studies are purely hypothetical, but I tend to gravitate to those that use real data from published studies like this one on the evolution of skin color that uses studies from a lot of disciplines to build to a conclusion, or this one on conservation corridors and meta-populations. A lot of case studies open with a fictional story, but this approach is a little corny for me, and I’d rather focus on the real scientists and their questions (the narrative case studies can also get weird (like this paternity case study that could also be a great Maury episode). In general, just pick things that work for you and your students. 

DIY Case Studies: If you have papers that you already like to teach, then consider turning them into a case study. To do this, I usually write an intro briefly framing the problem or question. Then I give students actual graphs from the paper with follow up questions to help them process the information. It is OK if the study has a few confusing elements; while we often want a clear story to present to our classes, there’s great evidence that using “messy” data builds scientific skills. You may have to modify graphs, or remake them for extra readability. This could mean re-labeling axes to remove jargon (e.g. in a paper on insects, “instar” becomes “developmental stage”). It might mean dropping some treatments (you don’t need 10 nitrogen treatments to understand eutrophication). Usually I follow every graph with 2-3 questions that follow a basic format:
  • Question 1: Ask students to detect any trends or differences in the graph. 
  • Question 2: Have students think of an explanation for the results
  • Question 3: Ask students to apply their “findings” to the question or problem posed in the case study
The above formula is just a starting place so add or alter questions to suit your needs. Sometimes I’ll use two or three graphs, and use the formula above. I usually end with a question that ties all the graphs together, like asking them to recommend a policy solution, or contrast the findings of different researchers.

Using Case Studies In Class: You can prepare students for a case either through a short lecture or through a homework assignment or reading quiz (this can be done using classroom management software like Blackboard, or Sakai). Once students have the background, have them break into groups of two to three, and work through the questions. It can be helpful to stop every few minutes to go through the answers (some case studies build on earlier questions, so early feedback is key). A great feature of case studies is that they can take nearly an entire class period, so you can go an entire day without having to lecture.

Clicker Questions 

The other main tool for flipping your classroom is clicker questions. Clickers are basically a real-time poll of your students so you can check how they are learning. Most instructors use them for participation points, rather than grading them for correctness (this encourages students to jump in and grapple with material, and not worry about making mistakes). Your university might have a set of clickers that you can borrow, or you have students use laptops, tablets and smartphones in place of clicker with apps like Poll Everywhere, GoSoapbox, Pinnion, or Socrative (these have different features and price points, so see what works for you). For a more comprehensive list of clicker tools , see this article from a team at Princeton.

Writing Good Clicker Questions: Good clicker questions should encourage discussion, and force students to apply their knowledge, not just test what they remember. This can mean using information to make recommendations, doing a calculation, or making predictions about the outcome of experiment. Standard clickers only allow for multiple choice questions, but other web-based tools will allow your students to do free responses, draw graphs, or give other types of answers. There are lots of great web resources on how to design clicker questions (in appendix). The slide show below shows some clicker questions we used in our flipped evolution class at CU Boulder.

Using Clickers In Class: Once you have your clicker questions written, then you’ll need to deploy them in class. Below is a basic blueprint for how to run a clicker question

1. Tell students to break into groups and get ready to discuss a clicker question
2. Give students about a minute to discuss the question, and open whatever clicker software you’re using. You’ll usually hear a 30 second surge in talking that dies down after about a minute. After about a minute give students a warning and tell then close out the clicker question.
3. At this point you can show the results of the clicker poll and start to unpack the question. If your questions are challenging, you should be getting significant amounts of wrong answers, so seeing a wide range of answers means you’re doing it right. Usually if 10% of your students are getting the question wrong, it is worth discussing the question in depth
4. Make students be able to articulate why right answers are right and why wrong answers are wrong. You can call on groups to get them to explain their answers (this is nicer than cold-calling individual students). If nobody wants to talk about wrong answers, say something like “why might someone think that B is a tempting answer?” so that nobody has to admit to being wrong in front of their peers.
5. It can be helpful to follow up with another question asking them to apply the material in a different way.

In conclusion, flipping your classroom can be done pretty cheaply and without that much more work than lecturing. This post is really just a starting place, and there are ton of great resources on the web to take you further. I’ve compiled just a few of them below. Good luck and happy flipping!

By Sarah Seiter


Videos on Flipped Classrooms:

Resources for Clicker Qs:
Clicker Question Guides from University of Colorado Boulder

Wednesday, April 23, 2014

Guest Post: You teach science, but is your teaching scientific? (Part I)

The first in a series of guest posts about using scientific teaching, active learning, and flipping the classroom by Sarah Seiter, a teaching fellow at the University of Colorado, Boulder. 

As a faculty member teaching can sometimes seem like a chore – your lectures compete with smartphones and laptops. Some students see themselves as education “consumers” and haggle over grades. STEM (science, technology, engineering, and math) faculty have a particularly tough gig – students need substantial background to succeed in these courses, and often arrive in the classroom unprepared. Yet, the current classroom climate doesn’t seem to be working for students either. About half of STEM college majors ultimately switch to a non-scientific field. It would be easy to frame the problem as one of culture – and we do live in a society that doesn’t always value science or education. However, the problem of reforming STEM education might not take social change, but rather could be solved using our own scientific training. In the past few years a movement called “scientific teaching” has emerged, which uses quantitative research skills to make the classroom experience better for instructors as well as students.

So how can you use your research skills to boost your teaching? First, you can use teaching techniques that have been empirically tested and rigorously studied, especially a set of techniques called “active learning”. Second, you can collect data on yourself and your students to gauge your progress and adjust your teaching as needed, a process called “formative assessment”. While this can seem daunting, it helps to remember that as a researcher you’re uniquely equipped to overhaul your teaching, using the skills you already rely on in the lab and the field. Like a lot of paradigm shifts in science, using data to guide your teaching seems pretty obvious after the fact, but it can be revolutionary for you and your students.

What is Active Learning:

There are a lot of definitions of active learning floating around, but in short active learning techniques force students to engage with the material, while it is being taught. More importantly, students practice the material and make mistakes while they are surrounded by a community of peers and instructors who can help. There are a lot of ways to bring active learning strategies to your classroom, such as clicker response systems (handheld devices that allow them to take short quizzes throughout the lecture). Case studies are another tool: students read about scientific problems and then apply the information to real world problems (medical and law schools have been them for years). I’ll get into some more examples of these techniques in post II; there are lots of free and awesome resources that will allow you to try active learning techniques in your class with minimal investment.

Formative Assessment:

The other way data can help you overhaul your class is through formative assessment, a series of small, frequent, low stakes assessment of student learning. A lot of college courses use what’s called summative assessment – one or two major exams that test a semester’s worth of material, with a few labs or a term paper for balance. If your goal is to see if your students learned anything over a semester this is probably sufficient. This is also fine if you’re trying to weed out underperforming students from your major (but seriously, don’t do that). But if you’re interested in coaching students towards mastery of the subject matter, it probably isn’t enough to just tell them how much they learned after half the class is over. If you think about learning goals like we think of fitness goals, this is like asking students to qualify for the Boston marathon, without giving them any times for their training runs.

Formative assessment can be done in many ways: weekly quizzes or taking data with classroom clicker systems. While a lot of formative assessment research focuses on measuring student progress, instructors have lots to gain by measuring their own pedagogical skills. There are a lot of tools out there to measure improvement in teaching skills (K-12 teachers have been getting formatively assessed for years), but even setting simple goals for yourself (“make at least 5 minutes for student questions”) and monitoring your progress can be really helpful. Post III will talk about how to do (relatively) painless formative assessment in your class.

How does this work and who does it work for:

Scientific teaching is revolutionary because it works for everyone, faculty and students alike. However, it has particularly useful benefits for some types of instructors and students.

New Faculty: inexperienced faculty can achieve results as good or better than experienced faculty by using evidence based teaching techniques. In a study at the University of Colorado, physics students taught by a graduate TA using scientific teaching outperformed those taught by an experienced (and well loved) professor using a standard lecture style (you can read the study here). Faculty who are not native English speakers, or who are simply shy can get a lot of leverage using scientific teaching techniques, because doing in-class activities relieves the pressure to deliver perfect lectures.
Test scores between a lecture-taught physics section
and a section taught using active learning techniques.

Seasoned Faculty: For faculty who already have their teaching style established, scientific teaching can spice up lectures that have become rote or help you address concepts that you see students struggle with year after year. Even if you feel like you have your lectures completely dialed in, consider whether you’re using the most cutting edge techniques in your lab, and if you your classroom deserves the same treatment.

Students also stand to gain from scientific teaching, and some groups of students are particularly poised to benefit from it:
Students who don’t plan to go into science: Even in majors classes, most of the students we teach won’t go on to become scientists. But skills like analyzing data, and writing convincing evidence based arguments are useful in almost any field. Active learning trains students to be smart consumers of information, and formative assessment teaches students to monitor their own learning – two skills we could stand to see more of in any career.

Students Who Love Science: Active learning can give star students a leg up on the skills they’ll need to succeed as academics, for all the reasons listed above. Occasionally really bright students will balk at active learning, because having to wrestle with complicated data makes them feel stupid. While it can feel awful to watch your smartest students struggle, it is important to remember that real scientists have to confront confusing data every day. For students who want research careers, learning to persevere through messy and inconclusive results is critical.

Students who struggle with science: Active learning can be a great leveler for students who come from disadvantaged backgrounds. A University of Washington study showed that active learning and student peer tutoring could eliminate achievement gaps for minority students. If you partially got into academia because you wanted to make a difference in educating young people, here is one empirically proven way to do that.

Are there downsides?

Like anything, active learning involves tradeoffs. While the overwhelming evidence suggests that active learning is the best way to train new faculty (the white house even published a report calling for more of it!), there are sometimes roadblocks to scientific teaching.

Content Isn’t King Anymore: Taking time to work with data, or apply scientific research to policy problems takes more time, so instructors can cover fewer examples in class. In active learning, students are developing scientific skills like experimental design or technical writing, but after spending an hour hammering out an experiment to test the evolution of virulence, they often feel like they’ve only learned about “one stupid disease”. However, there is lots of evidence that covering topics in depth is more beneficial than doing a survey of many topics. For example, high schoolers that studied a single subject in depth for more than a month were more likely to declare a science major in college than students who covered more topics.

Demands on Instructor Time: I actually haven’t found that active learning takes more time to prepare –case studies and clickers actually take a up a decent amount of class time, so I spend less time prepping and rehearsing lectures. However, if you already have a slide deck you’ve been using for years, developing clicker questions and class exercises requires an upfront investment of time. Formative assessment can also take more time, although online quiz tools and peer grading can help take some of the pressure off instructors.

If you want to learn more about the theory behind scientific teaching there are a lot of great resources on the subject:

These podcasts are a great place to start:

This book is a classic in the field: