Tuesday, September 27, 2011

The European Ecology Federation Congress, day 1

I’m in the beautiful walled city of Avila, Spain for the European Ecology Congress. It is at a lovely venue and with about 800-1000 attendees, seems like just the right size. It is a young meeting, with relatively few old-timers like me, but there is an excitement, and the talks have been excellent. Each session starts with a keynote, where the person gets 25 minutes, followed by a bunch of 15 minute talks. The most interesting aspects of the sessions I went to was that they usually include several 3-minute ‘flash’ talks, which surprisingly works. I spent the day going to talks in two sessions, plus a plenary talk by Jordi Bascompte, and here are the talks I saw*:


*sorry about the abrupt, choppy nature of some of the entries, there were a lot of talks, and they go until after 7pm.


I spent the morning in a session on biodiversity and ecosystem function under environmental change. Most of these talks we by people associated with the BACCARA project on forest biodiversity.


1) Xavier Morin, Montpellier, talked about climate change and tree diversity and productivity. Looked at SR (see glossary at end for acronyms) and FD on biomass produced. Do grassland BEF studies predict frost ones, with no opportunity for random assembly? Use forest dynamics model where species are defined by rigorous parameterization –one can examine long-term dynamics and many species combinations. Simulated 30 species monocultures and many combinations from 2-30. Strong relationship between realized richness and productivity, but a lot of variation. 93% of 30 species plots show transgressive over-yielding after 2000 years. FD predicts increase in productivity. Assess future climates from three climate change scenarios, always steeper slope with future climate, meaning diversity is more important in the future. This was a great talk.


Sibylle Stoeckli. Affects of diversity on individual tree performance. She wanted to assess the influences of tree traits (e.g., size) on the performance of neighbours. Plots planted with four species combinations, with a pool of 16 species, and treatment is different FD levels (based on 9 traits). No effect of plot diversity on tree performance. Tree height has effects on neighbours depending on whether focal tree is shade tolerant or intolerant. Diversity not important as traits of species such as growth rate. Interspecific competition lower than intraspecific.


Aitor Ameztegui. Montane-apine ecotone is diverse and are traits important for coexistence. Are interspecific differences key for coexistence, and can these tell us about biome changes. One species has advantage at low light but quickly saturated with increasing light. Silver fir had constant survivorship, while other species increased survivorship with increasing light. Fir has low plasticity, whereas Scots pine is more plasticity and should adapt to climate change.


Alfredo saldena. FD on decomposition in South American rainforest (Chile). He looked at two forest types within the Andes. In both forests strong positive relationship between FD and litter decomposition. FD is based on leaf traits.


Julia Koricheva. Forest diversity and insect communities. Boreal species (5) in southern Finland in monocultures and 2, 3 and 5 species mixtures. Looked at different types of leaf damage. For birch, increasing skelontonizing damage with diversity. During aphid outbreak, decline in density with increasing SR. They prefer birch. Leaf miner richness on birch increased with SR. In another, german, experiment (the experiment in Stoeckli's talk) where FD was manipulated. Again several types of herbivores had positive relationships with FD, again counter to expectations of more specialized herbivores declining with tree diversity.


Laura Concostrina-Zubiri. Biological soil crusts (BSC) are important for soil fertility and stability in dry ecosystems. creates soil heterogeneity. Examined the role of BSC across a grazing gradient. Measured 17 soil variables for a bunch of species. Species differ in their different soil fertilities. Less heterogeneity with higher grazing. Grazing also reduces individual species contributions to soil fertility.


Plenary talk: Jordi Bascompte. Plant-animal mutualistic networks. He talked about Global datasets to answer three questions: 1) are there regularities in network architecture; 2) Do these provide robustness to extinction; and 3) what are the contribution of species to network architecture and robustness? Networks seem to be nested such that specialist animals use most utilized plants. This means there should be a link between structure and robustness (losing an aminal should not result in plant extinction). Half of communities have interactions dictated by evolutionary history. Thus when there is extinction, it tends to be related species, nonrandom. Therefore clades are more likely to be lost. How much of the interactions that are shared can be used as a competition term in coexistence model. The higher the nestedness the lower the competition and the higher maximum diversity. Some species contribute to nestedness much more than others and therefore are much more responsible for stability and have greater probability to go extinct.


I spoke in a session on evolutionary history, ecosystem function and conservation, and (probably ignoring my talk) these were excellent.


Marten Winter. He asked whether phylogenetic studies purporting to do conservation actually did conservation and whether using PD was feasible. Assumptions, some not proven. Unsderstandability of terms like evolutionary potential, what that means for species and communities can cause confusion. Different measures can produce different patterns and he asked Don't we already conserve what we want? Or is there an added advantage to accounting for PD. There were a surprising number of papers that do make conservation recommendations.


Nicolas Mouquet. Phylogenetic constraints on BEF. Biodiversity crisis is a change for synthesis for diffect fields to come together. Positive relationships went from how much to what kind diversity. Evolution is necessary for understanding how biodiversity shapes ecosystem function. He tested these relationships with bacteria from Mediterranean and evolved in lab. There are ancestral and derived groups. Strong positive BEF relationships for both ancestral and derived taxa. For ancestors, a strong PD influence was observed. But not for derived taxa, a reshuffling of traits in the lab. Need to understand the history.


Ana Rodrigues. Species are not all the same such as mouse versus echidna. Need to be cognizant of tree structure and species distributions. Does it matter if we use PD for complimentary reserve design and compare maximizing PD vs SR vs random. SR conserved then look at PD. Little difference for mammals at global level, meaning that current reserve selection routines seem sufficient. Important for species level, but perhaps species level activities may have done a good job at conserving PD.


Sandrine Pavoine. Rockfish declines and phylogeny. Phylogenetic diversity based on period between speciation events. Sum abundances for lineages for each period. Sum period lengths times relative abundance. Calculate lineage contribution to total diversity. Which period is reponsible for abundance change. One period explained declines in rockfish and is actually quite an old period (6 million years).


Wilfried Thuiller. Preserving the tree of life and climate change. Are there winners and losers? Estimate phylogenetic consequences of climate change, if there are sensitive clusters, would one expect more loss than expected by chance. There is a phylogenetic signal in climate, kind of weak, but extremely close relatives respond similarly. Loss of PD is not much different than random. Sensitive species tend to be young. But there is a predicted loss of phylobetadiversity for all birds, mammals and plants with climate change.


Vincent Devictor. Comparing several components of biodiversity. Can SR, FD, PD serve as surrogates. Compared metrics using birds surveys in France with 22 traits. Abundance weighted measures. FD declining while SR increasing. Differential responses important for making conservation decisions.


Laure Turcoti (Flash talk 1). Comparison of SR FD PD on plant communities. SR increases with urbanization and FD and PD decrease with urbanization.


Laure Zupan (Flash talk 2). Current distribution of phylogenetic diversity. Covariation across different clades. Birds, amphibians and mammals. Mismatch between tax am amphibians high PD relative to SR, while mammals low.


Jonathan Davies. Plant extinction risk in the Cape using IUCN rankings. Genera level phylogeny for the over 700 genera in the Cape. Clustering of extinction risk on phylogeny, but plant extinction is correlated with clade size, meaning that large clades have more risk –opposite of what has been observed for mammals. The reason is that many small peripheral species with small range.


Sebastian lavergne. Dechronization of niches, i.e., travel back in time. Is there signal of niche conservatism, and for different niches for the birds for Europe. Climatic, habitat and trophic niches. Trophic niche evolves at slower rate but niches evolve in punctual way, not gradual. High clade disparity in niches since niches evolving faster.


Glossary

BEF: Biodiversity and ecosystem function

FD: Functional diversity

PD: Phylogenetic diversity

SR: Species richness

1 comment:

Marten Winter said...

Thanks Marc! Was a great session...
cheers! Marten