Showing posts with label EEF meeting. Show all posts
Showing posts with label EEF meeting. Show all posts

Sunday, October 2, 2011

The European Ecology Federation Congress, day 3

*sorry for the delay in getting the last day up, I've been catching up. The first talk of the morning was by Georgina Mace -great talk, and I will have an extended post on it later. Here are the other talks. This meeting was great!


Elisa Thebault. This was a great talk. She talked about the structure and stability of mutualistc and antagonistic networks. Nested interactions means that several generalists and specialists, but specialists use the same resource as generalists and do list overlap with other specialists. She addressed two main questions. First are there differences between mutualistic and antagonistic networks? Second, do these differences have consequences for coexistence and stability? First question, herbivores seem to have less nestedness and interact with closely related plants, while pollinators are more nested but less phylogenetically structured. For the second question, with is examined using modeling, using coupled predator prey equations (with a positive effect in the mutualism model) and simulated communities. She looked at two types of stability, persistence of species and resilience. She showed some very interesting results, for mutualistic networks, connectence and diversity increase stability, while for antagonistic, the opposite. Because of diversity change in the simulation, the mutualistic networks become more nested and more connected, again the opposite for antagonistic network, which becaome less connected and nested. What happens when you put these interactions together with both mutualistc and antagonist models? The same patterns emerge with muralists being more nested and connected.


Pedro Jordano. He talked about the functional role of complex networks including different types of seed dispersers and pollinators. Can phylogenetic relationships explain patterns of interactions between the seed dispersers and plants. In degraded habitats, through hunting, only a restribected subset of species are interacting with plants. What is the minimum complexity required to maintain ecosystem function.


Jason Tylianakis. He talked about global change and ecosystem function. In an example dataset, soil resource availability and grazing intensity affected trait compositiona dn diverisyt and changed plant productivity. When resources are heterogeneous then diversity affects function, but not when resources were homogeneous. Across a gradient of land use intensitfication, networks become simpler with functional links being dominated by few species. He looked at 133 host-parasitoid interaction webs. These webs deviate from null expectation and some habitats were significantly less complex than predicted.


Daniel Stouffer. He talk about understanding species roles and importance in food webs. Different types of interactions (sub webs) have differential probabilities of being present. Certain motifs appear to differentially contribute to stability. This approach can inform species conservation if a particular species appears in different motifs that contribute to network function or stability. Certain species may be common in motifs that reduce stability. Using New Zealand river food webs, he asked three questions: is the benefit of species phylogenetically conserved -yes, certain clades add benefit. Are these benefits community specific? No, beneficial species are so in all communities (bit similar communities). How general are these results? He compared the results to webs elsewhere in the world. Similar species are similarly beneficial elsewhere.


-Here I lost my notes from Jane Memmott’s plenary talk (sorry Jane!). It was a great overview of her research in restoration. At the heart of her talk was about making restoration scientifically rigorous.


Henrique Pereira. His talk was on modeling the response of biodiversity to global change. Biodiversity indicators for global change are biassed towards North America and Europe and certain taxa. Major uncertainty in extinction rates and what are the sources of uncertainty? A big source is the differences in scenarios for land change and human population growth. Also lack of ecological knowledge. Finally there are differences between models. He proposes a countryside species area relationship (cSAR) instead of regular SAR, which assumes an uninhabited matrix. Multiplies area by the affinity of species to live in that area, and so as long as a species has an affinity greater than zero for marginal habitat, it can persist in those areas –changing our predictions about habitat loss on species persistence. The cSAR predicts much lower extinction rates compared to classical SARs. Need data to classify affinities, such as uses surveys to cluster species by where they are found. The cSAR fits real data better than SAR.


Christophe Randin. His presentation was on whether elevational limits of deciduous trees match their thermal latitudinal limits. Species often not at equilibrium with their predicted fundamental niche, may reflect dispersal limitation. Species should reach their equilibrium since climate change so much quicker. Based olots of data, he presented where the distributional limitation should be and examined the distance from that edge. Surprisingly, the latitudinal limit was less likely to be reached by. Species, thus they are lagging on mountains.


Rita Bastos. She used a Dynamic model for understanding the recovery of the Azorean bullfinch in a changing environment, a lot a land use change and invasive species. Specifically, the model is a stochastic, spatially explicit model that incorates environmental variables and projected habitat change. She was able to test different management scenarios. Certain management actions on habitats can significantly increase population sizes but not spread.


Diogo Alagador. He spoke on adjusting protected areas to account for climate range adjustments. Species will move with climate change, but reserves do not move. Planning must involve multiple potential reserves and likely assisted migration. It is difficult to extrapolate for multiple species. Persistence then is the product of suitablility and dispersal ability for a species for each time period in future projections. This can be summed across species. This was tested for seveal species across all major taxa. There is variability in persistence across species and are very sensitive to disperal pathways.

Wednesday, September 28, 2011

The European Ecology Federation Congress, day 2

Day two of the conference, and still many great talks. I mainly stayed in the session on synthesizing community ecology, phylogenetics and macroecology. This has turned out to be a great conference and Avila is a great venue.


Carsten Rahbek. His talk is on merging the fields of macroecology to better understand patterns of diversity. Different models explain variation differentially at different scales. For example, climate models do well for wide-ranging species but not for scarce species. A model of evolution may do much better for scarce species, but not for wide-ranged species. Statistical tests confirm a correlation, but not necessarily a mechanism. One could get different conclusions if one were to compare to a null model. He advocates a spatially explicit species assembly model that integrates macroecological models with community assembly. It is scale invariant and can explain spatial and temporal variation in assemblages. In an example, he shows that, based on small scale sampling, species distribution models will over-predict richness. Need to combine macroecological models with distribution models, because acroecological models do well to predict richness but not composition while distribution models predict composition but not diversity.


Jens-Christian Svenning. He talked about paleoclimatic influences on ecological patterns and function across scales. Past climates have shown masive changes and different groups of species have evolved during these events, while other species have gone extinct. The velocity of climate change was highest in northern Europe and North temperate North America, and higher velocity results in lower endemism since it is quicker for species to migrate than diversify. Higher velocity results in lower specialization in hummingbirds. He finishes with a note about current regions undergoing fast climate change; these are not necessarily those same regions that had the most change in the past.


Adreas Prinzing. His talk was about how niche conservatism can inform our potential solutions for changing environments. Specialists are declining in changing environments and how does this apply to specialist clades of closely related species? Specialist species tend to occur in specialist genera. However, niche conservatism does not tell us everytng about species differences/similarities because closely related species clearly coexist and exhibit substantial trait differences. Species coexist within niches by key divergences.


Kenneth Kozak. He presented a way that phylogeny illuminates the origin of climate-richness relationships. Only speciation, extinction or dispersal can change richness, and many models do not ask how these processes change. He examined salamader diversity and evolutionary history using 16000 occurrence records in North America, and examined climate variables for occurrences. Diversity was highly associated with cool, moist places. Richness is strongly correlated with evolutionary time of colonization of climatic conditions. For example, evolution of warm species is recent, hence fewer species. Diversity does seem to be saturating, and so time is limiting factor, and more species can probably still emerge.


David Vietes. He gave an interesting talk on the amphibians of Madagascar, which is a diversity hotspot for amphibians. There were 132 described species n 1999 and now 263 with about 200 still needing to be described. Many are endemic to small regions of Madagascar (the whole family is endemic to Madagascar). He discussed many aspects of the distribution of these species, and looked at phylogenetic patterns. Some interesting observations include: older species pairs are further separated in space and smaller species have smaller ranges. Also, there appears to be a predictable pattern of richness hotspots, but endemism hotspots are more idiosyncratic.


Joaquin Hortal. He discussed the effect of glaciation on richness, functional diversity and phylogenetic diversity for European mammals. The hypothesis he explored was that current distributional patterns driven more by past changes since glaciation than current climate. He compare several different types of measures and it turns out that current climate is more important for explaining patterns of co-occurrence and relatedness, with more closely related species occurring together at northern locales.


Catherine Graham. She also explored patterns of richness, functional and phylogenetic diversity, but was looking at hummingbirds diversity patterns across elevation gradients in South America. She compiled an impressive dataset with several morphological traits and co-occurrence patterns. Broadly, close relatives co-occur at high elevations and more distantly at lower where competition is stronger. In local communities a mix of environmental filtering and competitive dispersion seem to be operating. At high elevations, both functional and phylogenetic diversity are high.


Rob Dunn. He gave a fantastic talk on the species on the human body and in our lives and homes. He told us about projects that involve citizen scientists from across the USA and had them sample their homes and bellybuttons. Amazingly, Dunn’s group has so far identified 1400 species in belly buttons, and many of them are unknown species –which could not be classified into known species groups. He looked at many factors like ethnicity, geography, cleanliness, but none of these explained this diversity well. A subset of these species are bellybutton specialists and dominate bellybutton floras within and among people, and are phylogenetically clustered, evidence that the bellybutton habitat is a conserved trait.


Cecil Albert. I ran to another session to see this talk on intraspecific variation in species traits. She eloquently showed that for plant assemblages, there was substantial intraspecific variation in traits. Some species showed high variation and some showed almost no variation. Importantly, she showed that this variation could substantially change our ability to explain how functional traits link to abundance and coexistence. She simulated different levels of variation and looked at the strength of the correlation between expectations from mean trait versus the actual trait that varies. The strength quickly declines for some traits as variation increases, meaning that with variable traits, the explanatory ability of using a mean trait is weak.


Sally Keith (Flash talk*). She examined the Mid-domain effect (where, because of range sizes, maximal diversity is found in the centre of a geographic landmass by random chance), and process based models to test mechanism for middomain prediction. She showed that these models seem to have limited success. Perhaps environmental gradients and species interactions could be important. But when she added interactions to the model, it then predicts humped shaped pattern predicted by the mid-domain effect.


Tamara Munkemuller (Flash talk). She examined phylogenetic relationships as a way to examine niche patterns and coexistence. She hypothesized that there should be strong filtering under stressful conditions. She examined thousands of plots across elevational gradients, and plots that were in stressful locations tended to be phylogenetically clustered, meaning certain groups of species exist there.


Susanne Fritz (Flash talk). She was looking at diversification patterns in birds. Using lineage through time plots one should expect that the rate of diversification should decline trough time, which perhaps equates to niche filling. For species in tropical Asia, she found that there is not much leveling off of diversification rate. Though interestingly, groups that have not dispersed (for example, birds of paradise) do show a plateau in diversification. Globally, diversification slows down more in more speciose regions.


Jake Alexander (Flash talk). He had a very interesting talk on elevation gradients in richness in non-native plants invading mountain habitats. Most species have narrow elevational ranges in lower and mid elevations and high ranges for those species found at high elevations. The explanation is that these non-natives are generalist and that they originate form lower elevations –where human activity dominates, and must spread up the mountain to get to the high elevations.


*Flash talks are 3 minutes long, and a great way for people to communicate new and exciting results.

Tuesday, September 27, 2011

The European Ecology Federation Congress, day 1

I’m in the beautiful walled city of Avila, Spain for the European Ecology Congress. It is at a lovely venue and with about 800-1000 attendees, seems like just the right size. It is a young meeting, with relatively few old-timers like me, but there is an excitement, and the talks have been excellent. Each session starts with a keynote, where the person gets 25 minutes, followed by a bunch of 15 minute talks. The most interesting aspects of the sessions I went to was that they usually include several 3-minute ‘flash’ talks, which surprisingly works. I spent the day going to talks in two sessions, plus a plenary talk by Jordi Bascompte, and here are the talks I saw*:


*sorry about the abrupt, choppy nature of some of the entries, there were a lot of talks, and they go until after 7pm.


I spent the morning in a session on biodiversity and ecosystem function under environmental change. Most of these talks we by people associated with the BACCARA project on forest biodiversity.


1) Xavier Morin, Montpellier, talked about climate change and tree diversity and productivity. Looked at SR (see glossary at end for acronyms) and FD on biomass produced. Do grassland BEF studies predict frost ones, with no opportunity for random assembly? Use forest dynamics model where species are defined by rigorous parameterization –one can examine long-term dynamics and many species combinations. Simulated 30 species monocultures and many combinations from 2-30. Strong relationship between realized richness and productivity, but a lot of variation. 93% of 30 species plots show transgressive over-yielding after 2000 years. FD predicts increase in productivity. Assess future climates from three climate change scenarios, always steeper slope with future climate, meaning diversity is more important in the future. This was a great talk.


Sibylle Stoeckli. Affects of diversity on individual tree performance. She wanted to assess the influences of tree traits (e.g., size) on the performance of neighbours. Plots planted with four species combinations, with a pool of 16 species, and treatment is different FD levels (based on 9 traits). No effect of plot diversity on tree performance. Tree height has effects on neighbours depending on whether focal tree is shade tolerant or intolerant. Diversity not important as traits of species such as growth rate. Interspecific competition lower than intraspecific.


Aitor Ameztegui. Montane-apine ecotone is diverse and are traits important for coexistence. Are interspecific differences key for coexistence, and can these tell us about biome changes. One species has advantage at low light but quickly saturated with increasing light. Silver fir had constant survivorship, while other species increased survivorship with increasing light. Fir has low plasticity, whereas Scots pine is more plasticity and should adapt to climate change.


Alfredo saldena. FD on decomposition in South American rainforest (Chile). He looked at two forest types within the Andes. In both forests strong positive relationship between FD and litter decomposition. FD is based on leaf traits.


Julia Koricheva. Forest diversity and insect communities. Boreal species (5) in southern Finland in monocultures and 2, 3 and 5 species mixtures. Looked at different types of leaf damage. For birch, increasing skelontonizing damage with diversity. During aphid outbreak, decline in density with increasing SR. They prefer birch. Leaf miner richness on birch increased with SR. In another, german, experiment (the experiment in Stoeckli's talk) where FD was manipulated. Again several types of herbivores had positive relationships with FD, again counter to expectations of more specialized herbivores declining with tree diversity.


Laura Concostrina-Zubiri. Biological soil crusts (BSC) are important for soil fertility and stability in dry ecosystems. creates soil heterogeneity. Examined the role of BSC across a grazing gradient. Measured 17 soil variables for a bunch of species. Species differ in their different soil fertilities. Less heterogeneity with higher grazing. Grazing also reduces individual species contributions to soil fertility.


Plenary talk: Jordi Bascompte. Plant-animal mutualistic networks. He talked about Global datasets to answer three questions: 1) are there regularities in network architecture; 2) Do these provide robustness to extinction; and 3) what are the contribution of species to network architecture and robustness? Networks seem to be nested such that specialist animals use most utilized plants. This means there should be a link between structure and robustness (losing an aminal should not result in plant extinction). Half of communities have interactions dictated by evolutionary history. Thus when there is extinction, it tends to be related species, nonrandom. Therefore clades are more likely to be lost. How much of the interactions that are shared can be used as a competition term in coexistence model. The higher the nestedness the lower the competition and the higher maximum diversity. Some species contribute to nestedness much more than others and therefore are much more responsible for stability and have greater probability to go extinct.


I spoke in a session on evolutionary history, ecosystem function and conservation, and (probably ignoring my talk) these were excellent.


Marten Winter. He asked whether phylogenetic studies purporting to do conservation actually did conservation and whether using PD was feasible. Assumptions, some not proven. Unsderstandability of terms like evolutionary potential, what that means for species and communities can cause confusion. Different measures can produce different patterns and he asked Don't we already conserve what we want? Or is there an added advantage to accounting for PD. There were a surprising number of papers that do make conservation recommendations.


Nicolas Mouquet. Phylogenetic constraints on BEF. Biodiversity crisis is a change for synthesis for diffect fields to come together. Positive relationships went from how much to what kind diversity. Evolution is necessary for understanding how biodiversity shapes ecosystem function. He tested these relationships with bacteria from Mediterranean and evolved in lab. There are ancestral and derived groups. Strong positive BEF relationships for both ancestral and derived taxa. For ancestors, a strong PD influence was observed. But not for derived taxa, a reshuffling of traits in the lab. Need to understand the history.


Ana Rodrigues. Species are not all the same such as mouse versus echidna. Need to be cognizant of tree structure and species distributions. Does it matter if we use PD for complimentary reserve design and compare maximizing PD vs SR vs random. SR conserved then look at PD. Little difference for mammals at global level, meaning that current reserve selection routines seem sufficient. Important for species level, but perhaps species level activities may have done a good job at conserving PD.


Sandrine Pavoine. Rockfish declines and phylogeny. Phylogenetic diversity based on period between speciation events. Sum abundances for lineages for each period. Sum period lengths times relative abundance. Calculate lineage contribution to total diversity. Which period is reponsible for abundance change. One period explained declines in rockfish and is actually quite an old period (6 million years).


Wilfried Thuiller. Preserving the tree of life and climate change. Are there winners and losers? Estimate phylogenetic consequences of climate change, if there are sensitive clusters, would one expect more loss than expected by chance. There is a phylogenetic signal in climate, kind of weak, but extremely close relatives respond similarly. Loss of PD is not much different than random. Sensitive species tend to be young. But there is a predicted loss of phylobetadiversity for all birds, mammals and plants with climate change.


Vincent Devictor. Comparing several components of biodiversity. Can SR, FD, PD serve as surrogates. Compared metrics using birds surveys in France with 22 traits. Abundance weighted measures. FD declining while SR increasing. Differential responses important for making conservation decisions.


Laure Turcoti (Flash talk 1). Comparison of SR FD PD on plant communities. SR increases with urbanization and FD and PD decrease with urbanization.


Laure Zupan (Flash talk 2). Current distribution of phylogenetic diversity. Covariation across different clades. Birds, amphibians and mammals. Mismatch between tax am amphibians high PD relative to SR, while mammals low.


Jonathan Davies. Plant extinction risk in the Cape using IUCN rankings. Genera level phylogeny for the over 700 genera in the Cape. Clustering of extinction risk on phylogeny, but plant extinction is correlated with clade size, meaning that large clades have more risk –opposite of what has been observed for mammals. The reason is that many small peripheral species with small range.


Sebastian lavergne. Dechronization of niches, i.e., travel back in time. Is there signal of niche conservatism, and for different niches for the birds for Europe. Climatic, habitat and trophic niches. Trophic niche evolves at slower rate but niches evolve in punctual way, not gradual. High clade disparity in niches since niches evolving faster.


Glossary

BEF: Biodiversity and ecosystem function

FD: Functional diversity

PD: Phylogenetic diversity

SR: Species richness