Showing posts with label communication. Show all posts
Showing posts with label communication. Show all posts

Monday, March 12, 2018

Gained in translation: translational ecology for the Anthropocene

A recent evaluation of the state of science around the world run by 3M found that 86% of the 14,000 people surveyed believed that they knew 'little to nothing' about science. 1/3 of all respondents also said they were skeptical of science and 20% went farther, saying that they mistrust scientists and their claims.

Those attitudes wouldn't surprise anyone following US politics these days. But they're still troubling statistics for ecologists. Perhaps more than most scientific disciplines, ecologists feel that their work needs to be communicated, shared, and acted on. That's because modern ecology can't help but explicitly or implicitly include humans – we are keystone species and powerful ecosystem engineers. And in a time where the effects of global warming are more impactful than ever, and where habitat loss and degradation underlie an age of human-caused extinction, ecology is more relevant than ever.

The difficulties in converting primary ecological literature into applications are often construed as being caused (at least in part) by the poor communication abilities of professional scientists. Typically, there is a call for ecologists to provide better science education and improve their communication skills. But perhaps this is an 'eco-centric' viewpoint – one that defaults to the assumption that ecologists have all the knowledge and just need to communicate it better. A more holistic approach must recognize that the gap between science and policy can only be bridged by meaningful two-way communication between scientists and stakeholders, and this communication must be iterative and focused on relevance for end-users.

William H. Schlessinger first proposed this practice - called Translational Ecology (TE) - nearly 8 years ago. More recently an entire special issue in Frontiers in Ecology and the Environment was devoted to the topic of translational ecology in 2017. [The introduction by F. Stuart Chapin is well worth a read, and I'm jealous of the brilliant use of Dickens in the epigraph: “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity.”]

Although applied ecology also is focused on producing and applying ecological knowledge for human problems, translational ecology can be distinguished by its necessary involvement of the end user and policy. Enquist et al. (2017, TE special issue) note: "Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues."
From Hallet et al. (2017, TE special issue)

The essential component of translational ecology is a reliance on people or groups known as boundary spanners, which are the key to (effectively) bridging the chasm between research and application. These people or organizations have particular expertise and skill sets to straddle the divide between "information producers and users". Boundary spanners are accountable to the science and the user, and generally enable communication between those two groups.

Boundary spanners likely have interdisciplinary backgrounds, and integrate knowledge and skills from ecology and biology, as well as disciplines such as anthropology, human geography, sociology, law, or politics. The key issue in that boundary spanners can overcome is the lack of trust between information users and producers. Translational ecology – through communication, translation, and mediation – is especially focused on developing relationships with stakeholders and boundary spanners are meant to be particularly skilled at this. 

For example, academics publish papers, and then the transmission of information to potential users is usually allowed to occur passively. At best, this can be slow and inefficient. At worst, potential end users lack access, time, and awareness of the work. Boundary spanners (including academics) can ensure this knowledge is accessibly by producing synthetic articles, policy briefs and white papers, by creating web-based decision-support tools, or by communicating directly with end users in other ways. A great example of existing boundary spanners are Coop extension offices hosted at US land grant universities. Coops are extensions of government offices (e.g. USDA) whose mission is to span the knowledge produced by research and to bring it to users through informal education and communication. 

For working academics, it may feel difficult to jump into translational ecology. There can be strong institutional or time constraints, and for those without tenure, fear that translational activities will interfere with other requirements. Institutions interested in working with ecologists also often face limitations of time and funding, and variable funding cycles can mean that boundary-spanning activities lack continuity.

But what's hopeful about the discussion of translational ecology in this issue is that it doesn't have an individualistic viewpoint: translational ecology requires teams and communities to be successful, and everyone can contribute. I think there is sometimes a very simplistic expectation that individual scientists can and must be exceptional generalists able to do excellent research, write and give talks for peers, teach and lecture, mentor, and also communicate effectively with the general public (in addition to taking care of administration, human resources, ordering and receiving, and laboratory management). We can all contribute, especially by training boundary spanners in our departments and labs. As F.S. Chapin says, "The key role of context in translational ecology also means that there are roles that fit the interests, passions, and skills of almost any ecologist, from theoreticians and disciplinarians to people more focused on spanning boundaries between disciplines or between theory and practice. We don't need to choose between translational ecology and other scientific approaches; we just need to provide space, respect, and rigorous training for those who decide to make translational ecology a component of their science.

From Enquist et al. (2017, TE special issue).

Special Issue: Translational ecology. Volume 15, Issue 10. December 2017. Frontiers in Ecology and the Environment

Friday, October 6, 2017

Blogging about science for yourself

In case you missed it, a new paper in Royal Society Open Science from seven popular ecology blogs discusses the highlights and values of science community blogging. It provides some insights into the motivations behind posting and the reach and impacts that result. It's a must-read if you've considered or already have a blog about science.

It was nice to see how universal the 'pros' of blogging seem to be – the things I most appreciate about contributing to a blog are pretty similar to the things the authors here reported on too. According to the archives, I've been posting here since 2010, when I was a pretty naïve PhD student interacting with the ecological literature for the first time. I had a degree of enthusiasm and wonder upon interacting with ideas for the first time that I miss, actually. I just started a faculty job this fall, and I think that the blog allowed me to explore and experiment with ideas as I figured out where I was going as a scientist (which is still an ongoing process).

As Saunders et al. note, one of the other major upsides to blogging is the extent to which it produces networking and connections with colleagues. In a pretty crowded job market, I think it probably helped me, although only as a complement to the usual suspects (publications, 'fit', research plans, interviewing skills). Saunders et al. also mentioned blogging as relevant to NSF's Broader Impacts section, which I actually hadn't considered. Beyond that, the greatest benefit by far for me is that forcing oneself to post regularly and publicly is amazing practice for writing about science.

Despite these positives, I don't necessarily think a science blog is for everyone and there are definitely things to consider before jumping in to it. It can be hard to justify posting on a blog when your to-do list overflows, and not everyone will –understandably- think that's a good use of their time. There is a time commitment and degree of prioritisation required that is difficult. This is one reason that having co-bloggers can be a lifesaver. It is also true that while writing a blog is great practice, it probably selects for people able to write quickly (and perhaps without perfectionistic tendencies).

When students ask me about blogging, they often hint at concerns in sharing their ideas and writing. It can be really difficult to put your ideas and writing out there (why invite more judgement and criticism?) and this is can feedback with imposter syndrome (speaking from my own experience). For a long time, minorities, women, students have been under-represented in ecology blogs, and I think this may be a contributor to that. It's nice to see more women blogging about these days, and hopefully there is a positive feedback from increasing the visibility of under-represented groups.

In any case, this paper was especially timely for me, because I've been re-evaluating over the past few months about whether to keep blogging or not, and this provided a reminder of the positive impacts that are easy to overlook.

Friday, July 14, 2017

Making conference talks compelling and meaningful

Langin, K. 2017. “Tell me a story! A plea for more compelling conference presentations”. The Condor 119(2):321-326.

Communicating complex ideas that rely on the accumulation of ideas, methods, and data is undeniably hard. Some people are naturals at presenting their work, but for many of us (definitely for me) it is a skill that only improves with lots of practice. With conference season in full swing, Kathryn Langin’s paper on this very topic is timely. She provides excellent advice, particularly on how to overcome the common pitfalls of “unclear questions, too much text, unreadable figures, no overarching storyline”. In particular, the appendix provides step-by-step advice on crafting talks and composing slides that should help both first timers and more experienced presenters. 

Langin notes that we treat scientists differently from other audiences: “Scientists are increasingly trained to distill research findings for audiences that lack a strong background in science (Baron 2010). However, we often fail to put those strategies to work when communicating with other scientists, which is unfortunate because many scientists lack deep knowledge of topics outside their immediate field (Pickett et al. 1991),” and “If we cannot effectively communicate our research to colleagues, then how are we going to communicate it to resource managers, policy makers, the media, and the general public?”

This is a worthy goal. But it’s also true that there isn’t perfect equivalence between these different types of talks, and while the techniques that make for public talks are useful across the board, they aren’t enough on their own. I’ve seen the odd talk where popular science video clips, overly-processed slides, or lengthy quotations took the place of substantive research, and there’s little I find more frustrating. So, to make Langin’s advice even more difficult, good science communication requires recognizing what information, and particularly what depth of information, must be communicated for a particular audience. For scientist audiences, speakers benefit from being able to make complicated ideas seem straightforward while not insulting the listener or glossing over the difficult.

Conference audiences are difficult because they tend to be a mix of different people with varied reasons for attending a particular talk. They could be specialists who sought your talk out based on the abstract, generalists in the broader area of study, or just scientists sitting randomly in the room waiting for the next talk. And while Langin says, “Science is both increasingly collaborative and increasingly specialized; an ability to communicate beyond scientists in your immediate field is important. While it may be tempting to tailor your presentation for the expert that you hope (or fear) will be in attendance (e.g., by packing it with methodological minutiae and mountains of data), such a strategy will come at the expense of communicating clearly to everyone else in the room”, I don’t completely agree. I think the people in the room that you want feedback from are the specialists and the experts. So it’s important to find a balance between losing the general audience and wasting this opportunity to communicate with your peers.

I might be in the minority here, but I would rather sit through a few methods slides that I can’t follow in detail, than to sit in a talk in which the methods are so cursory as to be uninformative. Similarly, utterances like “…and then there was some math here, but don't worry I won’t talk about it” seems counter-productive. Ignoring the anti-math sentiment (which reinforces the idea that math is hard and so should be avoided), if the math or stats are important enough to mention, they are important enough to talk about properly. With care, it is generally possible to find a balance in which you provide details for the informed listener while explaining the general logic of the mathematical approach for the rest of the audience. This is true for complicated methods of all types – all listeners should emerge feeling as though they understand what you did, even if they don’t understand it at the same level.

For new speakers this may sound overwhelming. A few points help all talks. Most importantly, every good talk has a compelling narrative that takes the listener on a journey. Even when that journey is complex or has a few twists, speakers can help by signposting important points and findings. Have important information on each slide be both written and verbalized. Get feedback from someone who is not you. And recognize – as a presenter and as a listener—that as with all things, it takes time to become an expert. And, practice makes perfect.

Wednesday, April 13, 2016

Who should communicate the policy implications of ecological research?

Ecology is a science that tries to understand the world. How is the diversity of organisms distributed around the world? How do extreme climate events influence populations of animals and plants? How does the diversity of organisms in a landscape influence its function and the delivery of services to humanity? These are all questions routinely asked by ecologists and, importantly, are topics that most academic ecologists would believe are necessary for providing evidence for policy and management of habitats and natural resources. Yet policy makers, managers and practitioners seldom access ecology research. There is a research-policy divide that needs to be overcome.

Spanning the chasm between academic research and policy (from
Many ecologists are reluctant to promote the policy implications of their research because they do not feel comfortable or connected enough to talk to non-academics. But if not them, then who is responsible to communicate the policy repercussions of their research?

The romanticized view of an untouched, pristine ecosystem no longer exists. We now live in a world where every major ecosystem has been impacted by human activities. From pollution and deforestation, to the introduction of non-native species, our activity has influenced every type of habitat. But this is where management and applied ecology have relevance. The study of human physiology has direct relevance for health science –that is, the value of this basic biological science is measured in its ability to help sick people, and not necessarily in its ability to better understand how healthy people function. So to does ecology need to be relevant for our ‘sick people’, that is, human-impacted landscapes. We have spent much of our collective effort studying intact, semi-natural systems, and this is necessary to understand the basic operations of nature. But now we are required to apply this understanding to improve ecological integrity and human wellbeing. We are surround by sick ecosystems and ecology is desperately needed to influence policy and management.

I just attended the joint symposium “Making a Difference in Conservation: Improvingthe Links Between Ecological Research, Policy and Practice”, put on by the British Ecological Society and the Cambridge Conservation Initiative. This meeting was attended by a nice mix of academic researchers and practitioners, and covered a broad range of ideas, issues and solutions to overcoming barriers to implementing evidence-based policy. Overcoming these barriers requires communication, and scientists need to be at the table. In arguing the case that scientists need to communicate the policy implications of their research below, I take ideas and information passed on in a number of excellent talks, including from: John Altringham, Malcolm Ausden, John Beddington, Ian Boyd, Fiona Fox, Georgina Mace, Andrew Miller, E. J. Milner-Gulland and Des Thompson, and my own workshop on communicating research to maximise policy impact.

A guy who probably doesn't know what he is talking about, talking about policy. Perhaps a bit outside my comfort zone. (photo by Martin Nunez)

The Hurdles

The hurdles to the uptake of research and evidence into policy decisions are complex and multifaceted. On the scientists’ side, the hurdles are mainly a lack of training, experience and comfort promoting the policy implications of their work. In graduate school, very few scientists-in-training take journalism and media courses, and so are not well versed in the ways to communicate in a broadly approachable way. Instead, we are taught to communicate in technically precise ways that can only be understood by similarly trained experts.

On the practitioner side, there are a number of pragmatic and systemic limitations to the uptake of evidence into policy and management decisions:

1.       Structural: There is a lack of resources and time to read and synthesize scientific research. A lack of access because of expensive subscription fees, is a pervasive problem for individuals and small organizations.
2.       Systemic: Big organizations and agencies are complex and communication of best practices or idea sharing might be lacking. Frequent staff turnover means that research understanding and institutional memory is lost.
3.       Relevance: Practitioners need research relevant to their problem and trolling the impossibly large literature is not an efficient way to find the necessary information.
4.       Timescale: Practitioners and policy makers work at a variety of speeds, dictated by priorities, contracts, etc., and looking for resources may not work within these timeframes.

These limitations and the lack of relevant research uptake result in policies and management strategies that are not adequately informed by research, which can waste money and may not produce in the desired results. We heard about the requirement to build bat crossings across new highways (to avoid car collisions), costing millions of dollars, but research has not supported their efficacy. 

Random bat picture to break up the flow (from

Should scientists engage policy makers? 

I do think that scientists have a responsibility to communicate, and perhaps advocate, for evidence to be used in policy decision-making. There is a line between being seen as objective versus as an advocate, and scientists need to do what they are comfortable with, but remember:

  1. You are an expert on your research; you are uniquely position to comment on it.
  2. Related to the previous point, you may not want other, untrained, people to represent and communicate your work.
  3. You have an obligation to the public. You are likely paid by tax dollars and your research is funded by public grants. A part of the responsibility then is to not only do research but to ensure that it is communicated and if the people who ultimately pay you would benefit from learning about your findings, you owe it to them to communicate it.
  4. There are positive feedbacks for your career. Being seen as a scientist who engages and does relevant work will mean that you achieve a higher profile.

Citizens and policy-makers get the most out of their new information (which forms the basis for their opinions) from media news. If the only voices being heard are advocates and interest groups, then evidence will be lacking or misrepresented. Scientists’ voices are needed in the media, and here you can educate many concerned people. The former British Education minister, Estelle Morris, when speaking about the Fukushima reactor meltdown, said that she learned more about radiation from scientific experts in the media than she had during her education.

Of course it is important to remember that science is only a part of the solution, human needs, economics and social values are also important. But without scientists’ involvement, evidence will not be an important part of solutions to crises. 

How to communicate

Scientists are often driven by immediate career concerns and they need to publish high profile, impactful papers in peer-reviewed scientific journals. And this won’t change. But as Georgina Mace said in her presentation, overselling the implications of research in papers diminishes their value and confuses practitioners and policy makers. Policy implications contained within publications is one avenue to influence policy makers, but rather than tacking on broad policy recommendations, consider consulting them before writing the paper, or even better, include them in the planning stage of the study. One speaker commented that instead of asking for a letter of support for a grant proposal from a non-academic partner at the 11th hour, discuss the ideas with them at the outset.

How should scientists communicate their research?
  1. Discuss finings with local interest groups (e.g., park managers).
  2. Give a public lecture to community organizations (e.g., naturalist club).
  3. Talk to local politicians.
  4. Use social media –create a persona that acts as an information broker.
  5. Write opinion articles for magazines or newspaper editorials.
  6. Be accessible to journalists (e.g., get yourself listed in your university expert database).

The UK as a model

The UK provides one of the best examples of meaningful interactions between scientists and policy makers. Perhaps a better way to state it, is that there is a gradient of engaged individuals from pure scientist to local practitioner. There are robust organizations that span government agencies, NGOs, and universities that bring scientists and practitioners into contact with one another. They have Chief Scientific Officers and advisory groups at multiple levels of government. These groups develop the risk registry that estimates the likelihood and the potential repercussions of environmental and biological disasters or emergencies (e.g., influenza pandemic, severe drought, etc.). There is a well respected and effective Science Media Centre that organizes briefing sessions that bring scientists together with journalists on timely and important topics. These briefings result in influential news stories that sometimes challenge government policy or public sentiment (e.g., badger culls, links between vaccines and autism, etc.). This is a system to be emulated.

So, should scientists communicate their findings and engage policy makers, managers and the public. Absolutely. It may seem like you are entering uncharted territory, but believe me, your voice is desperately needed.

If you want advice, encouragement or more information, feel free to contact me.

Wednesday, October 21, 2015

Scientists + Communication = ??

An academic is expected to be a jack of many trades – handling research, teaching, mentorship, administration, committee work, reviewing, grant-writing, and editorial duties. Science communication is increasingly being added to that list as well. Outreach, public engagement and science communication are all terms thrown around (e.g. the 'Broader Impacts' section of many NSF grants, for example, includes the possibility "Broaden dissemination to enhance scientific and technological understanding"). Sometimes this can include communication between academics (conferences, seminars, blogs like this one) but often it is meant to include communication with the general public. Statistics about low science literacy at least partially motivate this. For example, “Between 29% and 57% of Americans responded correctly to various questions measuring the concepts of scientific experiment and controlling variables. Only 12% of Americans responded correctly to all the questions on this topic, and nearly 20% did not respond correctly to any of them”. (

Clearly improving scientific communication is a worthy goal. But at times it feels like it is a token addition to an application, one that is outsourced to scientists without providing the necessary resources or training. . This is a problem because if we truly value scientific communication, the focus should be on doing it in a thoughtful manner, rather than as an afterthought. I say this because firstly because communicating complex ideas, some of which may require specialized terms and background knowledge, is difficult. The IPCC summaries, meant to be accessible to lay readers were recently reported to be incredibly inaccessible to the average reader (and getting worse over time!). Their Flesch reading ease scores were lower than those of Einstein’s seminal papers, and certainly far lower than most popular science magazines. Expert academics, already stretched between many skills, may not always be the best communicators of their own work.

Secondly, even when done well, it should be recognized that the audience for much science communication is a minority of all media consumers – the ‘science attentive’ or ‘science enthusiast’ portion of the public. Popular approaches to communication are often preaching to the choir. And even within this group, there are topics that naturally draw more interest or are innately more accessible. Your stochastic models will inherently be more difficult to excite your grandmother about than your research on the extinction of a charismatic furry animal. Not every topic is going to be of interest to a general audience, or even a science-inclined audience, and that should be okay.

So what should our science communication goals be, as scientists and as a society? There is entire literature on this topic (the science of science communication, so to speak), and it provides insight into what works and what is needed. However, “....despite notable new directions, many communication efforts continue to be based on ad-hoc, intuition-driven approaches, paying little attention to several decades of interdisciplinary research on what makes for effective public engagement.”

One approach supported by this literature process follows 4 steps:

1) Identify the science most relevant to the decisions that people face;
2) Determine what people already know;
3) Design communications to fill the critical gaps (between what people know and need to know);
4) Evaluate the adequacy of those communications.

This approach inherently includes human values (what do people want or need to know), rather than a science-centric approach. In addition, to increase the science-enthusiast fraction of the public, focusing on education and communication for youth should be emphasized.

The good news is that science is respected, even when not always understood or communicated well. When asked to evaluate various professions, nearly 70% of Americans said that scientists “contribute a lot” to society (compared to 21% for business executives), and scientists typically are excited about interacting with the public. But it seems like a poor use of time and money to simply expect academics to become experts on science communication, without offering training and interdisciplinary relationships. So, for example, in the broader impacts section of a GRFP, maybe NSF should value taking part in a program (led by science communication experts) on how to communicate with the public; maybe more than giving a one-time talk to 30 high school students. Some institutions provide more resources to this end than others, but the collaborative and interdisciplinary nature of science communication should receive far more emphasis. And the science of science communication should be a focus – data-driven approaches are undeniably more valuable.

None of this is to say that you shouldn't keep perfecting your answer for when the person besides you on an airplane asks you what you do though :-) 

Thursday, October 30, 2014

Deconstructing creationist "scientists"

I’ve been fascinated by creationism since I first moved to Tennessee over twelve years ago –home of the Scopes “monkey” trial. And though I’ve been away from Tennessee for about seven years now, creationism still fascinates me. I find it interesting not because their arguments are persuasive or scientifically credible –they’re absolutely not; but rather my interest in it is as a social or maybe psychological phenomenon. Why, in the light of so much compelling evidence, do otherwise intelligent people hold on to something that contradicts the record of life that surrounds us. I’m a biologist because I find the tapestry of life full of wonder and richness, with an amazing story to tell.

But what fascinates me most of all are trained scientists, who hold legitimate PhDs, who take up the cause of creationism. This is interesting from two angles –first the ‘scientists’ (more on them later), and second the organizations that support and fund their operations. Creationist organizations readily adopt and promote these scientist-turned-creationists, even though they routinely belittle and try to undermine working scientists. Its like the Republican party that dismisses the Hollywood elite as not real Americans, but proudly flaunting Chuck Norris or Clint Eastwood. When the PhDs are on the side of creationism, they are great scholars with meaningful expertise, and when they are against creationism (as are 99% of working scientists) they are elitist and part of a conspiracy.

Enter the latest parade of creationist scientists, who’s authority is meant to persuade the public, at a  ‘Origin Summit’ at Michigan State University in a few days. The first thing you see are four bespectacled PhDs, who are authoritized by the fact that they are PhD ‘scientists’. They are: Gerald Bergman, Donald DeYoung, Charles Jackson, and John Sanford. But, unfortunately for them, not all scientists are created equally.

What makes a scientist? That is not easily answered, but education is one element –and having a PhD from a recognized program and University is a good start. But being trained is not enough, there needs to be some sort of evaluation by the broader scientific community. First and foremost, a scientist needs to communicate their research findings to other scientists by publishing papers in PEER-REVIEWED academic publications. Peer-reviewed means that experts on the topic with examine your paper closely, especially the experimental design and analysis, a provide criticisms. All papers are criticized at this stage, but those with especially egregious problems will not be published. Scientists are also evaluated by other scientists when applying for research funds, being considered for promotion (for example, your record and papers should be sent to 5-8 scientists so they can evaluate the meaningfulness of your contributions), or being considered for scientific awards.

Table 1: How to know that you are doing science.

So then, the ability to publish and survive scrutiny is paramount to being a successful scientist. Of course someone who subscribes to science as conspiracy will say: “wait, then scientists control who gets to be a scientists, and so those with new or controversial ideas will be kept out of the club”. The next thing to understand is what makes a scientist “famous” within the scientific community. The most famous scientists of all time have overturned scientific orthodoxy –that is the scientists that were trailblazers and who came up with better explanations of nature. Many scientists appreciate new ideas and new theories, but work on these has to be scientifically robust in terms of methodology and analysis.

Now back to our Origin Summit scientists, how do they compare to normal expectations for a successful scientist? We will use the average expectations for an academic scientist to get tenure as our benchmark (Table 1). First, Gerald Bergman –biologist. He has a staggering number of degrees, some from legitimate institutions (e.g., Wayne State University), and some from unaccredited places with dubious legal standing (e.g., Columbia Pacific University). He had a real faculty position at Bowling Green University but was denied tenure in 1979. He claims that he was fired because of his anti-evolution religious beliefs (his claim –which to me says his creationism cannot be science). He went to court, and long-story-short he lost because he misrepresented his PhD to get a job in the first place. More importantly to our story here is, what was his record? Fortunately for us, scientific publications, like the fossil record, accurately reflect historical events. Looking through scholarly search engines for the period of time between 1976-1980 (when he would be making a case for tenure) I could only find one publication credited to G.R. Bergman, and it appears to be a published version of his dissertation on reducing recidivism among criminal offenders. Published theses are seldom peer reviewed, and this is certainly not biology. He does not meet our basic expectations for the scientific authority he is promoted as.

Next, is Donald DeYoung –astronomer. He is a professor in the Department of Science and Mathematics at Grace College, and Christian post-secondary institution. It has some accreditation, especially for some programs such as counselling and business. Its not fully accredited, but it seems to be a legitimate Christian school. I searched for legitimate peer-reviewed publications, which was tricky because there also exists another D. B. DeYoung, also on the math/astronomy side of the business. If we ignore his non-peer reviewed books, there may be only one legitimate publication from 1975 in the Journal of Chemical Physics, looking at a particular iron isotope –nothing to do with the age of the Earth or evolution. One paper, so he does not meet our expectations.

Third is Charles Jackson with a PhD in education. There is nothing meaningful on this guy to suggest he is a scientist by any stretch of the imagination. Next.

Finally, we have John Sanford, a geneticist. Now we are getting somewhere! How can a person who studies the basic building blocks of life, deny its role in shaping life? He is a plant breeder and was in an experimental agriculture station associated with Cornell University. I found about a dozen real papers published in scientific journals from his pre-tenure time. None are actually on evolution; they seem to be largely about pollen fertilization and transfer, and production of crops. His publications definitely changed later in his tenure, from basic plant breeding to creationist works. Most interestingly, he has a paper on a computer simulator called Mendel’s Accountant, published in 2007, that simulates genetic mutation and population fitness –the basic stuff of evolution, but which can presumably be used to support his theories about mutations causing ‘devolution’ and not the fuel for real evolution. I read the paper. The genetic theory underpinning is not in line with modern theory, and this is further evidenced by the scant referencing of the rich genetics literature. Most of the models and assumptions seem to be made de novo, to suit the simulation platform, instead of the simulator fitting what is actually understood about genetic mechanisms. I assume this is why the paper is not published in a genetics journal, but rather a computer science one, and one that is not listed in the main scientific indexing services (often how we judge a journal to be legitimate). Regardless, of the scientific specifics, Sanford is a legitimate scientist, and he is the one person I would love to ask deep questions about his understanding of the material he talks about.

The one thing to remember is that a PhD does not make one an expert in everything. I have a PhD in ecology and evolution, but I am not competent in basic physiology for example, and would/should not present myself as an authority to a broader public who may not know the difference between phylogeney and physiology.

So, at the end of the day, here is another creationist conference with a panel of scientific experts. One of the four actually deserves to be called that, and even then, he is likely to be talking about material he has not actually published on or researched. There is a reason why creationist organizations have a tough time getting real scientists on board, and instead are relegated to using mostly failed hacks, because there isn’t a scientific underpinning to creationist claims.

Thursday, March 27, 2014

Are we winning the science communication war?

Since the time that I was a young graduate student, there have been constant calls for ecologists to communicate more with the public and policy makers (Norton 1998, Ludwig et al. 2001). The impetus for these calls is easy to understand –we are facing serious threats to the maintenance of biodiversity and ecosystem health, and ecologists have the knowledge and facts that are needed to shape public policy. To some, it is unconscionable that ecologists have not done more advocacy, while others see a need to better educate ecologists in communication strategies. While the reluctance for some ecologists to engage in public communication could be due to a lack of skills that training could overcome, the majority likely has had a deeper unease. Like all academics, ecologists have many demands on their time, but are evaluated by research output. Adding another priority to their already long list of priorities can seem overwhelming. More fundamentally, many ecologists are in the business of expanding our understanding of the world. They see themselves as objective scientists adding to global knowledge. To these ‘objectivists’, getting involved in policy debates, or becoming advocates, undermines their objectivity.

Regardless of these concerns, a number of ecologists have decided that public communication is an important part of their responsibilities. Ecologists now routinely sit on the boards of different organizations, give public lectures, write books and articles for the public, work more on applied problems, and testify before governmental committees. Part of this shift comes from organizations, such as the Nature Conservancy, which have become large, sophisticated entities with communication departments. But, the working academic ecologist likely talks with more journalists and public groups than in the past.

The question remains: has this increased emphasis on communication yielded any changes in public perception or policy decisions. As someone who has spent time in elementary school classrooms teaching kids about pollinators and conservation, the level of environmental awareness in both the educators and children surprises me. More telling are surprising calls for policy shifts from governmental organizations. Here in Canada, morale has been low because of a federal government that has not prioritized science or conservation. However signals from international bodies and the US seem to be promising for the ability of science to positively influence science.

Two such policy calls are extremely telling. Firstly, the North American Free Trade Agreement (NAFTA), which includes the governments of Mexico, Canada, and the USA, which normally deals with economic initiatives and disagreements, announced that they will form a committee to explore measures to protect monarch butterflies. They will consider instituting toxin-free zones, where the spraying of chemicals will be prohibited, as well as the construction of a milkweed corridor from Canada to Mexico. NAFTA made this announcement because of declining monarch numbers and calls from scientists for a coordinated strategy.

The second example is the call from 11 US senators to combat the spread of Asian carp. Asian carp have invaded a number of major rivers in the US, and have their spread has been of major concern to scientists. The 11 senators have taken this scientific concern seriously, requesting federal money and that the Army Corps of Engineers devise a way to stop the Asian carp spread.

There seems to be promising anecdotal evidence that issues of scientific concern are influencing policy decisions. This signals a potential shift; maybe scientists are winning the public perception and policy war. But the war is by no means over. There are still major issues (e.g., climate change) that require more substantial policy action. Scientists, especially those who are effective and engaged, need to continue to communicate with public and policy audiences. Every scientifically informed policy decision should be seen as a signal of the willingness of audiences to listening to scientists and that communicating science can work.

Ludwig D., Mangel M. & Haddad B. (2001). ECOLOGY, CONSERVATION, AND PUBLIC POLICY. Annual Review of Ecology and Systematics, 32, 481-517.


Thursday, June 6, 2013

Speaking the language: is jargon always bad?

You hear mostly about the evils of jargon in science. Undeniably jargon is a huge barrier between scientific ideas and discoveries and non-scientists. Translating a complex, nuanced result into a sound bite or recommendation suitable for consumption by policymakers or the public can be the most difficult aspect of a project (something Alan Alda, as part of his Center for Communicating Science, is attempting to assist scientists with). But sometimes the implication in general seems to be that scientific jargon is always undesirable. Is jargon really always a bad thing?

Even between scientists, you hear criticism about the amount of jargon in talks and papers. I have heard several times that community ecology is a frequent offender when it comes to over-reliance on jargon (defn: “words or expressions that are used by a particular profession or group and are difficult for others to understand”). It is fun to come up with a list of jargon frequently seen in  community ecology, because examples are endless: microcosm, mesocosm, niche, extinction debt, stochastic, trophic cascades, paradigm shift, priority effects, alternate stable states, or any phrase ending in ‘dynamics’ (i.e. eco-evolutionary, neutral, deterministic). Special annoyance from me at the usage of multidisciplinary, trans-disciplinary, and inter-disciplinary to all express the exact same thing. I don’t think, despite this list, that jargon is necessarily problematic.

If the meaning implied by the word or phrase is more than the sum of its parts it is probably jargon. Ideally, jargon is a shared, accurate shorthand for communicating with colleagues. A paper published without any jargon at all would be much longer and not necessarily clearer. Instead of saying, “we used protist microcosms”, it would have to say, “we used a community of protist species meant to encapsulate in miniature the characteristic features of a larger community”. (And arguably ecology is still relatively understandable for a newcomer, compared to disciplines like cell and systems biology, where an abstract might seem impenetrable: “Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs.”)

Jargon is useful as a unifying tool: if everyone is using the same nicely defined label for a phenomenon, it is easier to generalize, contrast and compare across research. Jargon is many pieces of information captured in a single phrase: for example, using the term 'ecophylogenetics' may imply not only the application of phylogenetic methods and evolutionary biology to community ecology, but also the accompanying subtext about methodology, criticism, and research history. At its best, jargon can actually stimulate and unify research activities – you could argue that introducing a new term (‘neutral dynamics’) for an old idea stimulated research into the effects of stochasticity and dispersal limitation on community structure.

That’s the best case scenario for jargon. There are also consequences to developing a meaning-laden dialect unique to a subdiscipline. It is very difficult to enter a subdiscipline or move between subdisciplines if you don’t speak the language. New students often find papers difficult to penetrate because of the heavy reliance on jargon-y descriptions: obtaining new knowledge requires you already have a foundation of knowledge. Moving between subdisciplines is hard too – a word in one area may have completely different meaning in another. In a paper on conservation and reserve selection, complementarity might refer to the selection of regions with dissimilar species or habitats. In a biodiversity and ecosystem functioning paper, a not-very distant discipline, complementarity might refer to functional or niche differences among co-occurring species. Giving a talk to anyone but the most specialist audience is hampered by concerns about how much jargon is acceptable or understandable.

Jargon also leads to confusion. When using jargon, you can rely on understood meaning to delimit the boundaries of your meaning, but you may never specify anything beyond those boundaries. Everyone has heard a 30-second spiel so entirely made of jargon that you never develop a clear idea of what the person does. The other issue is that jargon can quickly become inaccurate, so laden with various meanings as to be not useful. The phrase ‘priority effect’, for example, has had so many particular mechanisms associated with it that it can be uninformative on its own. And I think most ecologists are well aware that jargon can be inaccurate, but it’s a difficult trap to get out of. The word “community”, essential to studying community ecology, is so broadly and inconsistently defined as to be meaningless. Multiple people have pointed this out (1, 2, 3) and even suggested solutions or precise definitions, but without lasting impact. One of the questions in my PhD defense was “how did I define an ecological community and why?”, because there is still no universal answer. How do we rescue words from becoming meaningless?

Something interesting, that you rarely see expressed about jargon is that linguists tells us that language is knowledge: how we understand something is not independent of the language we use to describe it. The particular language we think in shapes and limits what we think about: perhaps if you have many ways of finely delineating a concept you will think about it as a complex and subtle idea (the 100-words-for-snow idea). On the other hand, what if you have to rely on vague catch-alls to describe an idea? For example, a phrase like ‘temporal heterogeneity’ incorporates many types of differences that occur through time: is that why most researchers continue to think about differences through time in a vague, imprecise manner? Hard to say. It is hard to imagine where community ecology would be without jargon, and even harder to figure out how to fix all the issues jargon creates.