Showing posts with label communication. Show all posts
Showing posts with label communication. Show all posts

Thursday, December 3, 2020

Politics and the biodiversity crisis: a call for scientists to be politically engaged

I am a politics junkie. I am genuinely fascinated by politics and political systems, despite their irrational and often ineffective nature. Yet the world is awash with existential crises and solving them (or at least reducing the worst of their impacts) must come from the political systems that exist. So the question for biodiversity scientists is, how politically engaged do we need to be and how do we affect policy change regardless of the political party in power.There’s no doubt that science is more politicized, and polarizing, than ever, with general distrust in science and scientists increasing around the world (1). This declining trust comes from a combination of a lack of understanding of what science really is and the elevation and reinforcing of personal opinion from social media echo chambers, as evidenced by the rise of evidence-free conspiracy theories.

 

Past calls for scientists to become better communicators (2) has helped drive some scientists out of the ivory tower, but this increased visibility has minimally influenced public understanding, policy and discourse. Though there is an argument to be made that evidence-based policy and management in some sectors, like public health and ecosystem management, is undoubtedly better today than ten years ago. This lack of broad impact of scientists’ communicating is where we are at despite the many science communication courses now offered (3) and clearly better publicly engaged and more diverse scientists.

 

The core problem was never one of communication skills alone, rather, there has always been a political component that scientists need to engage with. We need to look no further than the disastrous COVID-19 response in countries like the United States or Brazil where highly respected infectious disease experts are thrown under the bus as soon as their advice deviates from political messaging. For example, a significant minority of Americans believes that Donald Trump knows more about viruses than Dr. Anthony Fauci, who has studied infectious diseases for decades with hundreds of papers published and which have been cited more than 200,000 times!


So, what should scientists do? Simply, they should be more politically engaged. Which sounds antithetical to our notions of objectivity and dispassionate advocacy. But I believe we can be politically engaged and retain this dispassionate objectivity.

 

But let me be clear, being politically engaged does not mean being political or a partisan. In fact, I champion being politically engaged while eschewing partisan politics -see my belief disclaimer[i]  and experience biases disclaimer[ii] at the end of this post.

 

Biodiversity scientists, who care about evidence-based public policy need to find ways to inform and influence political systems so that species extinctions and biodiversity loss are prevented, and ecosystem health improved. During my time as a professor, I’ve engaged with politicians and politics at all levels. It’s been rewarding, interesting and eye-opening, though debatably effective. From this experience, here are some suggestions about how to engage in political systems. 

1-Talk to politicians! You are an expert, and you were likely educated, employed and financed by public funds at some point in your career. You owe it to society and government to feedback into the system. I have met with politicians at all levels (municipal, provincial and federal) and from all the major parties that operate in Ontario, Canada. I have had some amazing experiences talking to interested and earnest politicians (I have had positive and unforgettable interactions with Kathleen Wynn [former Premier of Ontario] and Kirsty Duncan [former federal minister of science, and coincidentally a professor who taught me at the University of Windsor when I was an undergraduate]). I have also had some odd and frustrating conversations with other politicians. While I do talk all parties, I have found that representatives from the Conservative party here in Canada tend to have the strongest preconceived convictions without a firm understanding of science and fact, and they tend to be the most political; meaning that they are more likely to put their party or ideology over other concerns. Regardless of the specifics of any interaction, I believe that some of these conversations do have impact and at a minimum opens doors to more engagement.

 

2-Stay informed and share your thoughts. Being informed and knowledgeable allows you to speak to recent developments and make arguments germane in the current political landscape. This means being aware of legislative priorities and initiatives. Be aware of bills that are being proposed so you have time to talk to politicians and journalists. You should use different vehicles to discuss issues, whether that is with interviews or on social media. I have sat through legislative sessions in our provincial parliament in 2018, and the experience was mixed. On the one hand, I learned quite a bit about legislative processes and the priorities of the ruling party. On the other hand, I was very disappointed at the lack of serious thought and contemplation by members of the ruling party. It was all false praises of the Premier (I assume because their upward mobility depended on it) and a fundamental inability to provide meaningful answers or insights into decision-making. It reminded me of a bad movie about high school politics.

 

3-Don’t be partisan[iii]. Conveying science isn’t a partisan activity (even if some politicians attempt to make it so). Don’t use facts as a partisan attack, but do use facts to correct uniformed politicians or to criticize problematic legislation. For example, if a certain political party contains a substantial number of climate deniers or anti-vaxxers, don’t start your arguments by blasting their party. Rather, talk about the facts, and perhaps assume that there are other party members who are more open to facts and science and have good intentions. I realize that being non-partisan is more difficult in the United States where there are just two parties, but perhaps you should consider not registering yourself as a member of either party. Consider the fact that in the US, both parties have supported policies that favour economic growth over the environment and you should feel that either party has room to learn and grow. In Canada, avoiding party membership is much easier. I believe that a substantial proportion of Canadians will vote for different political parties in different elections (I have voted for three of our five main parties, plus small parties a couple of times). Under a million Canadians (out of 36 million) hold membership in a political party, so we are not an overly partisan country (and I hope it can stay that way, but the threat of right-wing populism is infecting our politics as it is elsewhere).

 

4-Run for office or support candidates. Ok, this one seemingly conflicts with #3, so we need to be careful here. There is something to be said for creating change from the inside. If you have the desire for public office, and being charismatic certainly helps, then pragmatism dictates you would need to run for a party. You shouldn’t say things you don’t believe, and you should be clear that you will prioritize science and evidence over party. And believe it or not, some parties would value this. Here in Toronto, since political parties are not permitted in our municipal elections, you can run or support candidates without any need to be a partisan. I canvassed for, and openly supported a friend who was elected as counsellor, Jennifer McKelvie. She holds a PhD in geochemistry and so brings not only a strong openness to science-informed policy, but has the credibility to lead on this front.

 

As I write this, the USA has a new President-elect who ostensibly supports science and evidence-based policies. Despite this, I argue that scientists should not rest on their laurels, but rather should engage with government. There are many many policy makers from your local ward all the way up to national levels and these people have a great diversity of viewpoints and understanding of science. Moreover, a more sympathetic administration does make it easier to engage and feel like your actions are having impact.

 

The final piece of advice is, and this is a very tough one for me personally, don’t get baited by the partisan trolls and nay-sayers. Some partisans don’t actually care about the truth or right and wrong, but rather view politics and policy making as a team sport, and any point they score is worth it. Rise above, state facts, point them to where they can learn more and offer advice on policy that makes sense.

 

 References

1.         L. McIntyre, The Scientific Attitude: Defending Science from Denial, Fraud, and Pseudoscience.  (The MIT Press, Cambridge, MA, 2019).

2.         S. J. Hassol, Improving how scientists communicate about climate change. Eos 89, 106-107 (2008).

3.         L. M. Kuehne et al., Practical Science Communication Strategies for Graduate Students. Conservation Biology 28, 1225-1235 (2014).

 



[i] A disclaimer. My political beliefs undoubtedly colour my perspective. I fully acknowledge that I am a militant non-partisan! I believe that political parties, by both their objectives and methods, are inherently anti-democratic. The main goal for any political party is the permanent consolidation of power; and the more power they have the more they use the tools and instruments of government to ensure they retain power. The voting public doesn’t seem to be overly concerned when the political party in power changes voting processes or electoral precinct boundaries to bias voting outcomes, especially when its ‘their team’. If we asked what made logical sense for a democracy, then there would be easy pathways to increase the number of parties (not clog those pathways), all votes would be of equal weight (why the heck is there still an electoral college in the USA?), governing bodies would be truly representative (i.e., proportional representation -we get majority government in Canada when one part gets 33% of the popular vote because of our riding system) and voters shouldn’t be restricted to selecting a single option (ranked voting works, at least when you have more than two real options). In reality, political parties might have outlived their usefulness. In Toronto, where I live, municipal elections do not permit official political party involvement, so we often have a dozen people running for counsellor in each ward and for mayor. This is the closest to true democracy as I’ve experienced.

 

[ii] Also, a second disclaimer. My understanding and views about politics are greatly shaped by political systems and governance in North America.

 

[iii] There is an important caveat here. For scientists in some countries, like for example in China, being a member of a political party is necessary in order to hold certain positions in academic institutions or government agencies.  


Monday, March 12, 2018

Gained in translation: translational ecology for the Anthropocene

A recent evaluation of the state of science around the world run by 3M found that 86% of the 14,000 people surveyed believed that they knew 'little to nothing' about science. 1/3 of all respondents also said they were skeptical of science and 20% went farther, saying that they mistrust scientists and their claims.

Those attitudes wouldn't surprise anyone following US politics these days. But they're still troubling statistics for ecologists. Perhaps more than most scientific disciplines, ecologists feel that their work needs to be communicated, shared, and acted on. That's because modern ecology can't help but explicitly or implicitly include humans – we are keystone species and powerful ecosystem engineers. And in a time where the effects of global warming are more impactful than ever, and where habitat loss and degradation underlie an age of human-caused extinction, ecology is more relevant than ever.

The difficulties in converting primary ecological literature into applications are often construed as being caused (at least in part) by the poor communication abilities of professional scientists. Typically, there is a call for ecologists to provide better science education and improve their communication skills. But perhaps this is an 'eco-centric' viewpoint – one that defaults to the assumption that ecologists have all the knowledge and just need to communicate it better. A more holistic approach must recognize that the gap between science and policy can only be bridged by meaningful two-way communication between scientists and stakeholders, and this communication must be iterative and focused on relevance for end-users.

William H. Schlessinger first proposed this practice - called Translational Ecology (TE) - nearly 8 years ago. More recently an entire special issue in Frontiers in Ecology and the Environment was devoted to the topic of translational ecology in 2017. [The introduction by F. Stuart Chapin is well worth a read, and I'm jealous of the brilliant use of Dickens in the epigraph: “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity.”]

Although applied ecology also is focused on producing and applying ecological knowledge for human problems, translational ecology can be distinguished by its necessary involvement of the end user and policy. Enquist et al. (2017, TE special issue) note: "Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues."
From Hallet et al. (2017, TE special issue)

The essential component of translational ecology is a reliance on people or groups known as boundary spanners, which are the key to (effectively) bridging the chasm between research and application. These people or organizations have particular expertise and skill sets to straddle the divide between "information producers and users". Boundary spanners are accountable to the science and the user, and generally enable communication between those two groups.

Boundary spanners likely have interdisciplinary backgrounds, and integrate knowledge and skills from ecology and biology, as well as disciplines such as anthropology, human geography, sociology, law, or politics. The key issue in that boundary spanners can overcome is the lack of trust between information users and producers. Translational ecology – through communication, translation, and mediation – is especially focused on developing relationships with stakeholders and boundary spanners are meant to be particularly skilled at this. 

For example, academics publish papers, and then the transmission of information to potential users is usually allowed to occur passively. At best, this can be slow and inefficient. At worst, potential end users lack access, time, and awareness of the work. Boundary spanners (including academics) can ensure this knowledge is accessibly by producing synthetic articles, policy briefs and white papers, by creating web-based decision-support tools, or by communicating directly with end users in other ways. A great example of existing boundary spanners are Coop extension offices hosted at US land grant universities. Coops are extensions of government offices (e.g. USDA) whose mission is to span the knowledge produced by research and to bring it to users through informal education and communication. 

For working academics, it may feel difficult to jump into translational ecology. There can be strong institutional or time constraints, and for those without tenure, fear that translational activities will interfere with other requirements. Institutions interested in working with ecologists also often face limitations of time and funding, and variable funding cycles can mean that boundary-spanning activities lack continuity.

But what's hopeful about the discussion of translational ecology in this issue is that it doesn't have an individualistic viewpoint: translational ecology requires teams and communities to be successful, and everyone can contribute. I think there is sometimes a very simplistic expectation that individual scientists can and must be exceptional generalists able to do excellent research, write and give talks for peers, teach and lecture, mentor, and also communicate effectively with the general public (in addition to taking care of administration, human resources, ordering and receiving, and laboratory management). We can all contribute, especially by training boundary spanners in our departments and labs. As F.S. Chapin says, "The key role of context in translational ecology also means that there are roles that fit the interests, passions, and skills of almost any ecologist, from theoreticians and disciplinarians to people more focused on spanning boundaries between disciplines or between theory and practice. We don't need to choose between translational ecology and other scientific approaches; we just need to provide space, respect, and rigorous training for those who decide to make translational ecology a component of their science.

From Enquist et al. (2017, TE special issue).



References:
Special Issue: Translational ecology. Volume 15, Issue 10. December 2017. Frontiers in Ecology and the Environment

Friday, October 6, 2017

Blogging about science for yourself

In case you missed it, a new paper in Royal Society Open Science from seven popular ecology blogs discusses the highlights and values of science community blogging. It provides some insights into the motivations behind posting and the reach and impacts that result. It's a must-read if you've considered or already have a blog about science.

It was nice to see how universal the 'pros' of blogging seem to be – the things I most appreciate about contributing to a blog are pretty similar to the things the authors here reported on too. According to the archives, I've been posting here since 2010, when I was a pretty naïve PhD student interacting with the ecological literature for the first time. I had a degree of enthusiasm and wonder upon interacting with ideas for the first time that I miss, actually. I just started a faculty job this fall, and I think that the blog allowed me to explore and experiment with ideas as I figured out where I was going as a scientist (which is still an ongoing process).

As Saunders et al. note, one of the other major upsides to blogging is the extent to which it produces networking and connections with colleagues. In a pretty crowded job market, I think it probably helped me, although only as a complement to the usual suspects (publications, 'fit', research plans, interviewing skills). Saunders et al. also mentioned blogging as relevant to NSF's Broader Impacts section, which I actually hadn't considered. Beyond that, the greatest benefit by far for me is that forcing oneself to post regularly and publicly is amazing practice for writing about science.

Despite these positives, I don't necessarily think a science blog is for everyone and there are definitely things to consider before jumping in to it. It can be hard to justify posting on a blog when your to-do list overflows, and not everyone will –understandably- think that's a good use of their time. There is a time commitment and degree of prioritisation required that is difficult. This is one reason that having co-bloggers can be a lifesaver. It is also true that while writing a blog is great practice, it probably selects for people able to write quickly (and perhaps without perfectionistic tendencies).

When students ask me about blogging, they often hint at concerns in sharing their ideas and writing. It can be really difficult to put your ideas and writing out there (why invite more judgement and criticism?) and this is can feedback with imposter syndrome (speaking from my own experience). For a long time, minorities, women, students have been under-represented in ecology blogs, and I think this may be a contributor to that. It's nice to see more women blogging about these days, and hopefully there is a positive feedback from increasing the visibility of under-represented groups.

In any case, this paper was especially timely for me, because I've been re-evaluating over the past few months about whether to keep blogging or not, and this provided a reminder of the positive impacts that are easy to overlook.

Friday, July 14, 2017

Making conference talks compelling and meaningful

Langin, K. 2017. “Tell me a story! A plea for more compelling conference presentations”. The Condor 119(2):321-326.

Communicating complex ideas that rely on the accumulation of ideas, methods, and data is undeniably hard. Some people are naturals at presenting their work, but for many of us (definitely for me) it is a skill that only improves with lots of practice. With conference season in full swing, Kathryn Langin’s paper on this very topic is timely. She provides excellent advice, particularly on how to overcome the common pitfalls of “unclear questions, too much text, unreadable figures, no overarching storyline”. In particular, the appendix provides step-by-step advice on crafting talks and composing slides that should help both first timers and more experienced presenters. 


Langin notes that we treat scientists differently from other audiences: “Scientists are increasingly trained to distill research findings for audiences that lack a strong background in science (Baron 2010). However, we often fail to put those strategies to work when communicating with other scientists, which is unfortunate because many scientists lack deep knowledge of topics outside their immediate field (Pickett et al. 1991),” and “If we cannot effectively communicate our research to colleagues, then how are we going to communicate it to resource managers, policy makers, the media, and the general public?”

This is a worthy goal. But it’s also true that there isn’t perfect equivalence between these different types of talks, and while the techniques that make for public talks are useful across the board, they aren’t enough on their own. I’ve seen the odd talk where popular science video clips, overly-processed slides, or lengthy quotations took the place of substantive research, and there’s little I find more frustrating. So, to make Langin’s advice even more difficult, good science communication requires recognizing what information, and particularly what depth of information, must be communicated for a particular audience. For scientist audiences, speakers benefit from being able to make complicated ideas seem straightforward while not insulting the listener or glossing over the difficult.

Conference audiences are difficult because they tend to be a mix of different people with varied reasons for attending a particular talk. They could be specialists who sought your talk out based on the abstract, generalists in the broader area of study, or just scientists sitting randomly in the room waiting for the next talk. And while Langin says, “Science is both increasingly collaborative and increasingly specialized; an ability to communicate beyond scientists in your immediate field is important. While it may be tempting to tailor your presentation for the expert that you hope (or fear) will be in attendance (e.g., by packing it with methodological minutiae and mountains of data), such a strategy will come at the expense of communicating clearly to everyone else in the room”, I don’t completely agree. I think the people in the room that you want feedback from are the specialists and the experts. So it’s important to find a balance between losing the general audience and wasting this opportunity to communicate with your peers.

I might be in the minority here, but I would rather sit through a few methods slides that I can’t follow in detail, than to sit in a talk in which the methods are so cursory as to be uninformative. Similarly, utterances like “…and then there was some math here, but don't worry I won’t talk about it” seems counter-productive. Ignoring the anti-math sentiment (which reinforces the idea that math is hard and so should be avoided), if the math or stats are important enough to mention, they are important enough to talk about properly. With care, it is generally possible to find a balance in which you provide details for the informed listener while explaining the general logic of the mathematical approach for the rest of the audience. This is true for complicated methods of all types – all listeners should emerge feeling as though they understand what you did, even if they don’t understand it at the same level.

For new speakers this may sound overwhelming. A few points help all talks. Most importantly, every good talk has a compelling narrative that takes the listener on a journey. Even when that journey is complex or has a few twists, speakers can help by signposting important points and findings. Have important information on each slide be both written and verbalized. Get feedback from someone who is not you. And recognize – as a presenter and as a listener—that as with all things, it takes time to become an expert. And, practice makes perfect.

Wednesday, April 13, 2016

Who should communicate the policy implications of ecological research?

Ecology is a science that tries to understand the world. How is the diversity of organisms distributed around the world? How do extreme climate events influence populations of animals and plants? How does the diversity of organisms in a landscape influence its function and the delivery of services to humanity? These are all questions routinely asked by ecologists and, importantly, are topics that most academic ecologists would believe are necessary for providing evidence for policy and management of habitats and natural resources. Yet policy makers, managers and practitioners seldom access ecology research. There is a research-policy divide that needs to be overcome.

Spanning the chasm between academic research and policy (from http://www.adventureherald.com/8-scary-suspension-bridges-you-do-want-to-cross/)
 
Many ecologists are reluctant to promote the policy implications of their research because they do not feel comfortable or connected enough to talk to non-academics. But if not them, then who is responsible to communicate the policy repercussions of their research?

The romanticized view of an untouched, pristine ecosystem no longer exists. We now live in a world where every major ecosystem has been impacted by human activities. From pollution and deforestation, to the introduction of non-native species, our activity has influenced every type of habitat. But this is where management and applied ecology have relevance. The study of human physiology has direct relevance for health science –that is, the value of this basic biological science is measured in its ability to help sick people, and not necessarily in its ability to better understand how healthy people function. So to does ecology need to be relevant for our ‘sick people’, that is, human-impacted landscapes. We have spent much of our collective effort studying intact, semi-natural systems, and this is necessary to understand the basic operations of nature. But now we are required to apply this understanding to improve ecological integrity and human wellbeing. We are surround by sick ecosystems and ecology is desperately needed to influence policy and management.

I just attended the joint symposium “Making a Difference in Conservation: Improvingthe Links Between Ecological Research, Policy and Practice”, put on by the British Ecological Society and the Cambridge Conservation Initiative. This meeting was attended by a nice mix of academic researchers and practitioners, and covered a broad range of ideas, issues and solutions to overcoming barriers to implementing evidence-based policy. Overcoming these barriers requires communication, and scientists need to be at the table. In arguing the case that scientists need to communicate the policy implications of their research below, I take ideas and information passed on in a number of excellent talks, including from: John Altringham, Malcolm Ausden, John Beddington, Ian Boyd, Fiona Fox, Georgina Mace, Andrew Miller, E. J. Milner-Gulland and Des Thompson, and my own workshop on communicating research to maximise policy impact.

A guy who probably doesn't know what he is talking about, talking about policy. Perhaps a bit outside my comfort zone. (photo by Martin Nunez)

The Hurdles

The hurdles to the uptake of research and evidence into policy decisions are complex and multifaceted. On the scientists’ side, the hurdles are mainly a lack of training, experience and comfort promoting the policy implications of their work. In graduate school, very few scientists-in-training take journalism and media courses, and so are not well versed in the ways to communicate in a broadly approachable way. Instead, we are taught to communicate in technically precise ways that can only be understood by similarly trained experts.

On the practitioner side, there are a number of pragmatic and systemic limitations to the uptake of evidence into policy and management decisions:

1.       Structural: There is a lack of resources and time to read and synthesize scientific research. A lack of access because of expensive subscription fees, is a pervasive problem for individuals and small organizations.
2.       Systemic: Big organizations and agencies are complex and communication of best practices or idea sharing might be lacking. Frequent staff turnover means that research understanding and institutional memory is lost.
3.       Relevance: Practitioners need research relevant to their problem and trolling the impossibly large literature is not an efficient way to find the necessary information.
4.       Timescale: Practitioners and policy makers work at a variety of speeds, dictated by priorities, contracts, etc., and looking for resources may not work within these timeframes.

These limitations and the lack of relevant research uptake result in policies and management strategies that are not adequately informed by research, which can waste money and may not produce in the desired results. We heard about the requirement to build bat crossings across new highways (to avoid car collisions), costing millions of dollars, but research has not supported their efficacy. 

Random bat picture to break up the flow (from http://www.bugsbirdsandbeasts.co.uk/go-batty)

Should scientists engage policy makers? 

I do think that scientists have a responsibility to communicate, and perhaps advocate, for evidence to be used in policy decision-making. There is a line between being seen as objective versus as an advocate, and scientists need to do what they are comfortable with, but remember:

  1. You are an expert on your research; you are uniquely position to comment on it.
  2. Related to the previous point, you may not want other, untrained, people to represent and communicate your work.
  3. You have an obligation to the public. You are likely paid by tax dollars and your research is funded by public grants. A part of the responsibility then is to not only do research but to ensure that it is communicated and if the people who ultimately pay you would benefit from learning about your findings, you owe it to them to communicate it.
  4. There are positive feedbacks for your career. Being seen as a scientist who engages and does relevant work will mean that you achieve a higher profile.


Citizens and policy-makers get the most out of their new information (which forms the basis for their opinions) from media news. If the only voices being heard are advocates and interest groups, then evidence will be lacking or misrepresented. Scientists’ voices are needed in the media, and here you can educate many concerned people. The former British Education minister, Estelle Morris, when speaking about the Fukushima reactor meltdown, said that she learned more about radiation from scientific experts in the media than she had during her education.

Of course it is important to remember that science is only a part of the solution, human needs, economics and social values are also important. But without scientists’ involvement, evidence will not be an important part of solutions to crises. 

How to communicate

Scientists are often driven by immediate career concerns and they need to publish high profile, impactful papers in peer-reviewed scientific journals. And this won’t change. But as Georgina Mace said in her presentation, overselling the implications of research in papers diminishes their value and confuses practitioners and policy makers. Policy implications contained within publications is one avenue to influence policy makers, but rather than tacking on broad policy recommendations, consider consulting them before writing the paper, or even better, include them in the planning stage of the study. One speaker commented that instead of asking for a letter of support for a grant proposal from a non-academic partner at the 11th hour, discuss the ideas with them at the outset.

How should scientists communicate their research?
  1. Discuss finings with local interest groups (e.g., park managers).
  2. Give a public lecture to community organizations (e.g., naturalist club).
  3. Talk to local politicians.
  4. Use social media –create a persona that acts as an information broker.
  5. Write opinion articles for magazines or newspaper editorials.
  6. Be accessible to journalists (e.g., get yourself listed in your university expert database).


The UK as a model

The UK provides one of the best examples of meaningful interactions between scientists and policy makers. Perhaps a better way to state it, is that there is a gradient of engaged individuals from pure scientist to local practitioner. There are robust organizations that span government agencies, NGOs, and universities that bring scientists and practitioners into contact with one another. They have Chief Scientific Officers and advisory groups at multiple levels of government. These groups develop the risk registry that estimates the likelihood and the potential repercussions of environmental and biological disasters or emergencies (e.g., influenza pandemic, severe drought, etc.). There is a well respected and effective Science Media Centre that organizes briefing sessions that bring scientists together with journalists on timely and important topics. These briefings result in influential news stories that sometimes challenge government policy or public sentiment (e.g., badger culls, links between vaccines and autism, etc.). This is a system to be emulated.

So, should scientists communicate their findings and engage policy makers, managers and the public. Absolutely. It may seem like you are entering uncharted territory, but believe me, your voice is desperately needed.

If you want advice, encouragement or more information, feel free to contact me.





Wednesday, October 21, 2015

Scientists + Communication = ??

An academic is expected to be a jack of many trades – handling research, teaching, mentorship, administration, committee work, reviewing, grant-writing, and editorial duties. Science communication is increasingly being added to that list as well. Outreach, public engagement and science communication are all terms thrown around (e.g. the 'Broader Impacts' section of many NSF grants, for example, includes the possibility "Broaden dissemination to enhance scientific and technological understanding"). Sometimes this can include communication between academics (conferences, seminars, blogs like this one) but often it is meant to include communication with the general public. Statistics about low science literacy at least partially motivate this. For example, “Between 29% and 57% of Americans responded correctly to various questions measuring the concepts of scientific experiment and controlling variables. Only 12% of Americans responded correctly to all the questions on this topic, and nearly 20% did not respond correctly to any of them”. (http://www.nsf.gov/statistics/seind14/index.cfm/chapter-7/c7s2.htm).

Clearly improving scientific communication is a worthy goal. But at times it feels like it is a token addition to an application, one that is outsourced to scientists without providing the necessary resources or training. . This is a problem because if we truly value scientific communication, the focus should be on doing it in a thoughtful manner, rather than as an afterthought. I say this because firstly because communicating complex ideas, some of which may require specialized terms and background knowledge, is difficult. The IPCC summaries, meant to be accessible to lay readers were recently reported to be incredibly inaccessible to the average reader (and getting worse over time!). Their Flesch reading ease scores were lower than those of Einstein’s seminal papers, and certainly far lower than most popular science magazines. Expert academics, already stretched between many skills, may not always be the best communicators of their own work.

Secondly, even when done well, it should be recognized that the audience for much science communication is a minority of all media consumers – the ‘science attentive’ or ‘science enthusiast’ portion of the public. Popular approaches to communication are often preaching to the choir. And even within this group, there are topics that naturally draw more interest or are innately more accessible. Your stochastic models will inherently be more difficult to excite your grandmother about than your research on the extinction of a charismatic furry animal. Not every topic is going to be of interest to a general audience, or even a science-inclined audience, and that should be okay.

So what should our science communication goals be, as scientists and as a society? There is entire literature on this topic (the science of science communication, so to speak), and it provides insight into what works and what is needed. However, “....despite notable new directions, many communication efforts continue to be based on ad-hoc, intuition-driven approaches, paying little attention to several decades of interdisciplinary research on what makes for effective public engagement.”

One approach supported by this literature process follows 4 steps:

1) Identify the science most relevant to the decisions that people face;
2) Determine what people already know;
3) Design communications to fill the critical gaps (between what people know and need to know);
4) Evaluate the adequacy of those communications.


This approach inherently includes human values (what do people want or need to know), rather than a science-centric approach. In addition, to increase the science-enthusiast fraction of the public, focusing on education and communication for youth should be emphasized.

The good news is that science is respected, even when not always understood or communicated well. When asked to evaluate various professions, nearly 70% of Americans said that scientists “contribute a lot” to society (compared to 21% for business executives), and scientists typically are excited about interacting with the public. But it seems like a poor use of time and money to simply expect academics to become experts on science communication, without offering training and interdisciplinary relationships. So, for example, in the broader impacts section of a GRFP, maybe NSF should value taking part in a program (led by science communication experts) on how to communicate with the public; maybe more than giving a one-time talk to 30 high school students. Some institutions provide more resources to this end than others, but the collaborative and interdisciplinary nature of science communication should receive far more emphasis. And the science of science communication should be a focus – data-driven approaches are undeniably more valuable.

None of this is to say that you shouldn't keep perfecting your answer for when the person besides you on an airplane asks you what you do though :-) 

Thursday, October 30, 2014

Deconstructing creationist "scientists"

I’ve been fascinated by creationism since I first moved to Tennessee over twelve years ago –home of the Scopes “monkey” trial. And though I’ve been away from Tennessee for about seven years now, creationism still fascinates me. I find it interesting not because their arguments are persuasive or scientifically credible –they’re absolutely not; but rather my interest in it is as a social or maybe psychological phenomenon. Why, in the light of so much compelling evidence, do otherwise intelligent people hold on to something that contradicts the record of life that surrounds us. I’m a biologist because I find the tapestry of life full of wonder and richness, with an amazing story to tell.

But what fascinates me most of all are trained scientists, who hold legitimate PhDs, who take up the cause of creationism. This is interesting from two angles –first the ‘scientists’ (more on them later), and second the organizations that support and fund their operations. Creationist organizations readily adopt and promote these scientist-turned-creationists, even though they routinely belittle and try to undermine working scientists. Its like the Republican party that dismisses the Hollywood elite as not real Americans, but proudly flaunting Chuck Norris or Clint Eastwood. When the PhDs are on the side of creationism, they are great scholars with meaningful expertise, and when they are against creationism (as are 99% of working scientists) they are elitist and part of a conspiracy.

Enter the latest parade of creationist scientists, who’s authority is meant to persuade the public, at a  ‘Origin Summit’ at Michigan State University in a few days. The first thing you see are four bespectacled PhDs, who are authoritized by the fact that they are PhD ‘scientists’. They are: Gerald Bergman, Donald DeYoung, Charles Jackson, and John Sanford. But, unfortunately for them, not all scientists are created equally.




What makes a scientist? That is not easily answered, but education is one element –and having a PhD from a recognized program and University is a good start. But being trained is not enough, there needs to be some sort of evaluation by the broader scientific community. First and foremost, a scientist needs to communicate their research findings to other scientists by publishing papers in PEER-REVIEWED academic publications. Peer-reviewed means that experts on the topic with examine your paper closely, especially the experimental design and analysis, a provide criticisms. All papers are criticized at this stage, but those with especially egregious problems will not be published. Scientists are also evaluated by other scientists when applying for research funds, being considered for promotion (for example, your record and papers should be sent to 5-8 scientists so they can evaluate the meaningfulness of your contributions), or being considered for scientific awards.

Table 1: How to know that you are doing science.

So then, the ability to publish and survive scrutiny is paramount to being a successful scientist. Of course someone who subscribes to science as conspiracy will say: “wait, then scientists control who gets to be a scientists, and so those with new or controversial ideas will be kept out of the club”. The next thing to understand is what makes a scientist “famous” within the scientific community. The most famous scientists of all time have overturned scientific orthodoxy –that is the scientists that were trailblazers and who came up with better explanations of nature. Many scientists appreciate new ideas and new theories, but work on these has to be scientifically robust in terms of methodology and analysis.

Now back to our Origin Summit scientists, how do they compare to normal expectations for a successful scientist? We will use the average expectations for an academic scientist to get tenure as our benchmark (Table 1). First, Gerald Bergman –biologist. He has a staggering number of degrees, some from legitimate institutions (e.g., Wayne State University), and some from unaccredited places with dubious legal standing (e.g., Columbia Pacific University). He had a real faculty position at Bowling Green University but was denied tenure in 1979. He claims that he was fired because of his anti-evolution religious beliefs (his claim –which to me says his creationism cannot be science). He went to court, and long-story-short he lost because he misrepresented his PhD to get a job in the first place. More importantly to our story here is, what was his record? Fortunately for us, scientific publications, like the fossil record, accurately reflect historical events. Looking through scholarly search engines for the period of time between 1976-1980 (when he would be making a case for tenure) I could only find one publication credited to G.R. Bergman, and it appears to be a published version of his dissertation on reducing recidivism among criminal offenders. Published theses are seldom peer reviewed, and this is certainly not biology. He does not meet our basic expectations for the scientific authority he is promoted as.



Next, is Donald DeYoung –astronomer. He is a professor in the Department of Science and Mathematics at Grace College, and Christian post-secondary institution. It has some accreditation, especially for some programs such as counselling and business. Its not fully accredited, but it seems to be a legitimate Christian school. I searched for legitimate peer-reviewed publications, which was tricky because there also exists another D. B. DeYoung, also on the math/astronomy side of the business. If we ignore his non-peer reviewed books, there may be only one legitimate publication from 1975 in the Journal of Chemical Physics, looking at a particular iron isotope –nothing to do with the age of the Earth or evolution. One paper, so he does not meet our expectations.

Third is Charles Jackson with a PhD in education. There is nothing meaningful on this guy to suggest he is a scientist by any stretch of the imagination. Next.

Finally, we have John Sanford, a geneticist. Now we are getting somewhere! How can a person who studies the basic building blocks of life, deny its role in shaping life? He is a plant breeder and was in an experimental agriculture station associated with Cornell University. I found about a dozen real papers published in scientific journals from his pre-tenure time. None are actually on evolution; they seem to be largely about pollen fertilization and transfer, and production of crops. His publications definitely changed later in his tenure, from basic plant breeding to creationist works. Most interestingly, he has a paper on a computer simulator called Mendel’s Accountant, published in 2007, that simulates genetic mutation and population fitness –the basic stuff of evolution, but which can presumably be used to support his theories about mutations causing ‘devolution’ and not the fuel for real evolution. I read the paper. The genetic theory underpinning is not in line with modern theory, and this is further evidenced by the scant referencing of the rich genetics literature. Most of the models and assumptions seem to be made de novo, to suit the simulation platform, instead of the simulator fitting what is actually understood about genetic mechanisms. I assume this is why the paper is not published in a genetics journal, but rather a computer science one, and one that is not listed in the main scientific indexing services (often how we judge a journal to be legitimate). Regardless, of the scientific specifics, Sanford is a legitimate scientist, and he is the one person I would love to ask deep questions about his understanding of the material he talks about.

The one thing to remember is that a PhD does not make one an expert in everything. I have a PhD in ecology and evolution, but I am not competent in basic physiology for example, and would/should not present myself as an authority to a broader public who may not know the difference between phylogeney and physiology.


So, at the end of the day, here is another creationist conference with a panel of scientific experts. One of the four actually deserves to be called that, and even then, he is likely to be talking about material he has not actually published on or researched. There is a reason why creationist organizations have a tough time getting real scientists on board, and instead are relegated to using mostly failed hacks, because there isn’t a scientific underpinning to creationist claims.