Showing posts with label ecosystem function. Show all posts
Showing posts with label ecosystem function. Show all posts

Monday, September 12, 2011

British Ecological Society meeting: day 1, the Tansley Lecture by Diane Wall

I am at the BES meeting in Sheffield. I will be spending most of the day in journal meetings, but I was able to attend the opening lecture. I will be able to attend more talks tomorrow.

Diana Wall gave the Tansley Lecture to open the meeting. The focus of her talk was about integrating soil biodiversity into ecosystem science. She started with a quote from Arthur Tansley about how all the aspects of an ecosystem can not be ignored, and Professor Wall argues that type soils, specifically the organisms living below ground have been largely ignored, and we do now live in an era where we can study all aspects of ecosystems. Her talk showed the ways in which soil orgasims matter and how global change may have consequences for the link between soil organisms and the ecosystem functions they provide.

This is especially important because soils are deteriorating globally, and while soils are home to an impressive diversity of organisms, so little understood about these organisms. Often we do not even know how many species are found in soils (though in many cases we are talking about hundreds or thousands of species per square meter, which means we can cannot predict how global change could affect these biota and the functions they provide.

She went through three examples to highlight the importance of soil organisms and research needs to predict the impacts of global change (here global change seems broadly defined including: temperature, precipitation, land use, and water flow). In the first example, she reviews the role of soil organisms in extreme ecosystems (Antarctic and hot desert) and how climate change may alter dynamics. Experiments show how important soil organism are for flow of nutrients and energy, and global change experiments show drastic changes in their abundance, thus we should expect large consequences as environments change, especially as moisture regimes change. In different systems, the relative importance of biotic vs abiotic drivers (e.g., the presence of plants versus moisture gradients) differs and differentially important for the ecosystem effects, and so more understanding is required for predictions.

In the second part, soil animals affect soil decomposition in moist places, thus changes in moisture affect ecosystem pathways. In the third part, she outlines the ways in which soil organisms provide ecosystem services, nutrient cycling, diseases, food, food webs, biocontrol, carbon storage, waster breakdown, etc. These services have been understudied and under appreciated.

Overall this talk was a lucid and poignant call for more work to be done on soil biota -not to know what is there necessarily, but rather to be able to link together the effects of changing environments on ecosystem function.

Monday, May 30, 2011

Nature’s little blue pill

Something often happens to mature community ecology studies as they get older that we don’t like to talk about much. Occasionally, when biodiversity and ecosystem functioning experiments are performed in a controlled, homogeneous setting, they can suffer from flaccid response curves. It’s perfectly normal, happens to lots of healthy microcosm communities, but it can be troubling and embarrassing nonetheless. After all, who doesn’t want a nice stiff linear response curve?

Bear with me here for a minute.

A few weeks ago, Bradley Cardinale published a study in which he tested the effects of algal biodiversity on water quality in streams. It’s a pretty classic diversity-function experiment; lots of artificial streams with different numbers of species of algae in them, and he measured productivity and nitrogen uptake. As is usually the case, the more species he put in each stream, the more these ecosystem functions increased.

But Cardinale did something else in this experiment that has never been done before, at least not on this scale. He added extra niche opportunities to some of the streams, so that they offered multiple different habitats for algae. He did this by introducing heterogeneity through flow and disturbance manipulations.

Figures from Cardinale 2011, Nature. a and b are the heterogeneous streams, d and e are the homogeneous ones.

You might be familiar with that saturating response curve that is typical of so many diversity-function experiments. It starts off with large increases in ecosystem functioning as species are added to communities, and then it levels off so that as additional species are added, they only increase ecosystem functioning by small amounts (figures d and e). The theory behind this is that there are only so many niches in an environment, and as more and more species are added some of them become redundant.

Well when Cardinale threw those extra habitats into his artificial streams, that floppy old saturating curve sprang up like a regressional jack-in-the-box (figures a and b).

What happened was the homogeneous streams became dominated by just a single species that was well adapted to that environment. The heterogeneous streams allowed different species to coexist and this let them make more efficient use of the resources in those streams.

This is a major finding for a few reasons. First, it confirms that one of the main mechanisms behind diversity-function relationships is niche partitioning. I’ve said in the past that knowledge of these mechanisms is sorely needed. Second, it links coexistence theory to ecosystem functioning, two fields that are closely related but often disconnected.

Finally, it means that biodiversity is even more valuable than we had previously thought. The natural world doesn’t contain very many homogeneous streams; it’s a complicated place. The real world is probably better represented by figures a and b than by figures d and e. So while controlled experiments have shown that some species are redundant for ecosystem functioning, there is no evidence here for any redundancy in more natural settings.

This paper also underlines the fact that these studies need to be done in nature as opposed to labs. Cardinale was able to simulate nature fairly realistically because he was using algae. That’s harder to do with more complex organisms. It’s difficult to recreate environmental heterogeneity in artificial ecosystems, and if ecosystem functioning depends on both biodiversity and heterogeneity, then it’s time to take this research outside. Manipulative field studies are a good start, but completely natural settings will probably reveal more of the true story.

So although it’s very common for artificial communities to suffer from Ecological Dysfunction, there is no reason that they can’t enjoy a healthy relationship with biodiversity like any other community. All they need is a little heterogeneity to spice things up and put that spring back in their step.

Andy Hector has written an excellent perspective on the study. I recommend reading it, particularly if you don’t want to read the entire original article.

Saturday, April 2, 2011

White-nose syndrome and wind turbines: why biodiversity matters


Linking ecosystem services to economic benefits is a vital step in connecting ecological research to policy and political action. The UN Environmental Programme’s The Economics of Ecosystems and Biodiversity (TEEB) initiative represents a concerted effort to draw attention to the economic benefits of biodiversity and cost of ecosystem degradation, and to bring together scientists, economists and policy-makers.

Accordingly, Boyles et al. (Nature, 2011) paint a troubling picture about the value of economic benefits that insectivorous bats provide to the North American economy, and the degree of extinction risk they currently face. The authors point out that bats are “among the most overlooked, yet economically important, non-domesticated animals in North America”, and their loss would cost North Americans more than 3.7 billion dollars/year. Given rapid declines in populations due to white-nose syndrome (over 1 million bats killed) and wind turbine fatalities (projected to reach up to 30,000-100,000 fatalities/year as wind turbine installations increase), the authors suggest action can't wait.



Hopefully using the universal language of money helps translate scientific knowledge into political action. After all, bats are only one group of species: imagine the true cost of current rates of biodiversity loss and ecosystem destruction, from the smallest microorganism to the largest megafauna. The total must be staggering. And so, it seems, is the scale of action required to halt this decline.

Thursday, January 20, 2011

The evolutionary story of ecosystem function

ResearchBlogging.orgTwenty years of research has repeatedly shown that communities with greater diversity result higher functioning -namely greater production of biomass. One of the major mechanisms producing this relationship is that different species use differing resources, such that their complementary use of resources uses the total resource pool more thoroughly, thus converting more resources into biomass. Resource preference is the product of evolution and how organisms have adapted to using various resources can influence the strength of the diversity-function.

In a recent paper in Nature, Dominique Gravel and colleagues test how the evolution of specialization versus general resource use affect the strength of the diversity-function relationship. They use bacteria strains that have undergone evolution on diverse resources (generalist) versus on a singular resource (specialist). The resources in their case are different carbon substrates.

Assemblages of generalists were able to use many available resources and generally had greater productivity than specialist assemblages. Generalists also show an increasing relationship between diversity and productivity, because no generalist used all resources and they still showed some preferences. Combining multiple such generalists meant that more of the total resource pool was consumed. Specialists also resulted in the positive relationship, but a much steeper one. Because specialist use many fewer carbon substrates, additional specialists meant that new resources were tapped into. Thus increasing specialist diversity resulted in more new resources being consumed than with the generalist species.

While these results are logical, they are important for two reasons. First is that the strength of the relationship between diversity and function is mechanistically determined by the resource use efficiency of individual strains, and how many of the total substrates they can use. The mechanisms producing different relationships in previous experiments were hypothesized after the results analyzed, as opposed to being predicted. Second, recent work has shown that evolutionary history seems to be a better explanation of community function than the number of species. These results show how the history of evolution can have important consequences for function.

Gravel, D., Bell, T., Barbera, C., Bouvier, T., Pommier, T., Venail, P., & Mouquet, N. (2010). Experimental niche evolution alters the strength of the diversity–productivity relationship Nature, 469 (7328), 89-92 DOI: 10.1038/nature09592

Friday, December 10, 2010

Biodiversity and ecosystem functioning – without fungi?

Different subfields of ecology have a propensity to remain remarkably isolated – researchers in aquatic systems independently develop hypotheses that already exist in some form in other systems, and vice versa. Population ecology and community ecology, despite their obvious relevance to each other, are rarely integrated. There is a tendency – resulting from limits on our time, experience, and possibly imagination – to stay within whatever box we’ve defined for ourselves.

Historically, it seems that biodiversity and ecosystem functioning has lost sight of the progress made in classical ecology in understanding the mechanisms behind species coexistence (and all the functional implications that follow). Studies of ecosystem functioning often vaguely reference concepts such as “niche partitioning”, which would hardly be explicit enough for most papers on coexistence. Fortunately, there are periodically attempts to unifying ecological knowledge.


One of the most important contributions to understanding coexistence is Chesson’s (2000) framework of equalizing and stabilizing effects. Unlike previous approaches to species interactions, which tended to reference these vaguely-defined “niche differences”, Chesson proposed that species interactions depended on both fitness differences (differences in absolute growth rates after niche differences are controlled for) and niche differences (ecological differences between species which cause intraspecific competition to exceed interspecific competition). He also suggested rigorous methods to quantify these concepts. This framework has been applied both to the obvious questions of species coexistence and diversity maintenance, as well as predator-prey relationships (2008) and the phylogenetic structure of communities (2010).

In a recent paper, Ian Carroll et al. apply this framework to the search for the mechanisms behind biodiversity and ecosystem functioning. They point out that the questions in studies of ecosystem functioning are directly analogous to Chesson’s concepts – selection effects result from fitness or competitive differences between species, while complementarity relates to the partitioning of resources, or niche differences between species. The added benefit is that Chesson has provided clear definitions for these concepts.

While this may not be world-altering, it’s encouraging. Anytime different areas of ecology intersect, both benefit. Of course there are difficulties – no doubt the question of how to measure niche differences and fitness differences will be contentious (as attempts to translate ecological theory into ecological methodology often are) - but the possibility that a few general ecological concepts explain diverse observations is worth pursuing.

Thursday, November 18, 2010

Biodiversity and ecosystem functioning - only with fungi

Once again scientists have come to an age-old conclusion: fungus is behind all of life’s great mysteries. It's responsible for curing strep throat, delicious veggie burgers, that unique musk emanating from your gym bag, the colour-morphing walls at last night’s party and now, biodiversity and ecosystem functioning.

The world of biodiversity and ecosystem functioning (BEF), like many other high-profile disciplines of science, has often been bogged down by controversy. In such situations, we often spend a disproportionate amount of time focusing on the controversy instead of actually advancing the science itself (sound familiar?)

There have been several posts about BEF on this blog in the last few months, but briefly and oversimplified, here's how it works. Ecosystem functions are things like productivity, nutrient cycling and decomposition. Ecosystems that contain many species produce higher levels of these functions than monocultures do. The controversy here surrounds the cause of this phenomenon. In the 1990s, researchers originally disagreed over whether the relationship they observed was due to complementarity (different species partitioning resources) or selection effects (the higher chance of a really productive species being included in a community with many species). The question was largely settled a few years ago; selection effects do exist, but most of the relationship is driven by complementarity. Nonetheless, many biologists who are only tangentially familiar with this area of research are unaware of the consensus and continue to believe that the issue remains unresolved. Some still dismiss the whole field of BEF because of selection effects. I guess people just love a controversy.

The result of all this is that the ecologists studying these relationships have had to spend an undue amount of time parsing their results into selection and complementarity and discussing the two phenomena. They have even come to refer to these as the “mechanisms” behind BEF. And this is where we start to have a problem. Selection and complementarity are not mechanisms - they are symptoms of mechanisms. They do not tell us what is actually causing the positive effect that biodiversity has on ecosystem functioning, only what the shape of the relationship is. In fact, very few studies have actually looked for true mechanisms that explain the effects that we have repeatedly observed.

But this week I read a new paper in Ecology Letters that actually did find a mechanism, and it wasn’t one that we expected. John Maron and his coauthors at the universities of Montana and British Columbia found that belowground fungi were causing plant productivity to increase with diversity.

In an impressively complete experiment, Maron et al. put together a classic BEF setup of many plots containing varying levels of plant diversity and then measured plant biomass. But this time they added a twist; they applied fungicide to the soil in some of these plots. The result was that in the absence of fungi, the common BEF relationship disappeared. The low diversity plots became much more productive, while productivity at high diversity only increased slightly. The authors explained their results by the fact that fungi can be both species-specific and density-dependent, so as plant diversity increases, the fungi’s negative impact on plant productivity diminishes. And for good measure, they of course also ruled out a significant selection effect in their results.

So what does this all mean? Well for one thing, it means that we now have at least one good mechanistic explanation for that black box that we’ve been calling “complementarity” for years. But perhaps more importantly, it means that the link between biodiversity and ecosystem functioning is now more real than ever. If plant species go extinct, the remaining ones will be more susceptible to fungal pathogens and productivity will decline. So let’s try to not let that happen, k?

Maron, J. L., Marler, M., Klironomos, J. N. and Cleveland, C. C. , Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, DOI: 10.1111/j.1461-0248.2010.01547.x