Showing posts with label climate change. Show all posts
Showing posts with label climate change. Show all posts

Wednesday, October 31, 2018

Losing the rainforest of the sea: Coral reef decline and loss of future ecosystem benefits and services

*This is a guest post by Karuna Sehgal - student in my 'Causes & Consequences of Biodiversity' course. 

The past three decades of human activity has altered the earth in more ways than one. The Earth is losing species, ecosystems and biodiversity because of warming climates, among other factors. Coral reefs, in particular, are greatly impacted by the rise of global surface temperatures.

Coral Reefs throughout tropical and sub-tropical oceans are under tremendous heat stress resulting in coral bleaching and mortality. Corals are animals that live in a symbiotic relationship with microscopic dinoflagellate algae that inhabit the coral tissues (Baker et al., 2008). Increased water temperatures result in corals expelling dinoflagellates living in their tissues, causing the coral to turn white, ending its symbiotic relationship (Heron et al., 2017). This does not necessarily mean death for the coral; however bleaching still adversely impacts corals by inhibiting growth and reproduction (Heron et al., 2017). This symbiotic relationship provides the coral with about 90% of the energy it needs to thrive, it also enables corals to construct limestone skeletons that form the three-dimensional structure of reefs, which provides habitat for over a million species (Heron et al., 2017. They are referred to as the Rainforests of the Sea because they are the most bio-diverse ecosystem in the ocean, comparable to rainforests on land. Species richness and the diversity found in these systems are phenomenal and breathtaking, and yet they are dying at an alarming rate.

Fig. 1: Examples of a healthy and a bleached coral reef (images modified from Wikipedia pages on coral reefs and reef degradation, respectively)

Coral Reefs provide a lot of ecological and economically important services; they gross an estimated value of over $1 trillion (USD) globally, because of their social, economic and cultural services (Heron et al., 2017). With that being said, reefs only account for less than 0.1% of the ocean floor, but host more than one-quarter of all marine fish species (Heron et al., 2017). Climate change alters the pristine attractiveness of coral reefs to tourists, which directly affects low-income coastal countries and small developing islands within coral reef regions (Hoegh-Guldberg et al., 2007). Developing countries are not equipped to respond to climate change, and many rely on tourism for the majority of their economies (Hoegh-Guldberg et al., 2007). But tourist visits are one form of valuation, coral reefs are also critical for supporting fisheries and protecting shorelines from erosion,  For the loss of reef ecosystem services it is going to cost the US about $500 billion per year by 2100 (Hoegh-Guldberg et al., 2015).

This loss of economic value through bleaching is ultimately caused by our activities. Anthropogenic activity has resulted in rising temperatures and increases in the atmospheric concentration of carbon dioxide; this has been the largest increase in global temperature since the pre-industrial times (Stocker et al., 2013). Widespread mass coral bleaching was first documented in 1983 at the time of an extremely strong El Nino (Cofroth et al., 1989). It is important to note that coral reefs have been around a long time and residing in oceans since at least the Triassic period over 200 million years ago, and are well adapted to specific environmental conditions and human activity has damaged them in a matter of 30 years. Therefore water temperatures of even 1-2oC above the normal temperature would result in severe coral bleaching (Heron et al., 2017). It was estimated that coral reefs would take approximately 15- 25 years to recover from mass mortality, but if the frequency of mass mortality events increases to a point where the return time of mortality event is less than the time it takes to recover, the abundance of corals on reefs will decline (Heron et al., 2017).

Ocean acidification is another factor affecting coral reefs because it hinders the coral's ability to build their limestone skeletons and increases bio-erosion of reefs (Heron et al., 2017). With approximately 25% of the emitted CO2 from anthropogenic sources entering the ocean and producing carbonic acid, which then dissociates to form bicarbonate ions and protons, reducing the availability of carbonate to biological systems (Hoegh-Guldberg et al., 2007). These high CO2 levels and ocean acidification are expected to cause coral reefs to erode. A number of studies have determined that the doubling of pre-industrial atmospheric CO2 to 560 ppm decreases coral calcification and growth by up to 40% through the inhibition of aragonite formation as carbonate-ion concentrations decrease (Hoegh-Guldberg et al., 2007). Studies have concluded that the corals will not thrive again until the atmospheric CO2 has been reduced to 320-350 ppm (Heron et al., 2017).

Building the resilience of these reefs by reducing human impacts is now the main focus of organisations like the World Heritage Committee of UNESCO and the Reef Resilience Network. A World Heritage Committee analysis showed that nearly all of the 29 World Heritage coral reef sites were exposed to levels of heat stress that cause coral bleaching, more than twice per decade during the 1985-2013 period (Heron et al., 2017). Roughly 21 of the World Heritage reef properties have been exposed to repeated heat stress during the past three years (Heron et al., 2017), threatening the long-term persists of these unique and valuable places.

Fig. 2: Satellite image of coral bleaching alerts from  2014–2017 (image from NOAA Coral Reef Watch)
Bleaching and heat stress spread across tropical oceans and intensified during El Niño, and continued from La Niña and beyond (Heron et al., 2017). This period has included the three warmest years on record: 2014, 2015, and 2016 (Heron et al., 2017). Figure 2 shows that more than 70% of the global coral reef locations have experienced bleaching and most of these have experienced it twice or more, since June 2014 (Heron et al., 2017).

What is the future of these reefs? Will the next generation be able to see and explore them as we have or will they have to watch documentaries of what used to be? Coral Reefs are the most biologically diverse and economically important ecosystem on the planet, providing ecosystem services, essential to human societies and they are at danger (Hoegh-Guldberg et al., 2007).

References

Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80:435-471.
Cofroth MA, Lasker HR, Oliver JK (1989) Coral mortality outside of the eastern Pacific during 1982-83: Relationship to El Niño. In: Global Ecological Consequences of the 1982-83 El Niño-Southern Oscillation. Glynn, PW. (ed.). Elsevier.
Heron et al. 2017. Impacts of Climate Change on World Heritage Coral Reefs : A First Global Scientific Assessment. Paris, UNESCO World Heritage Centre.
Hoegh-Guldberg O, et al. (2015) Reviving the Ocean Economy: the case for action - 2015. WWF International, Gland, Switzerland.Geneva, 60p.
O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck. (2007). Coral Reefs Under Rapid Climate Change and Ocean Acidificaition. Science, 318, 1-7. Doi: 10.1126/science.1152509
Stocker TF, et al. (2013) Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Cambridge University Press. 
 

-->

Friday, October 26, 2018

Do the economics and logistics of field ecology bias our understanding of environmental problems?

Location of Antarctic field stations. Image from Wikipedia.


Field ecology is difficult, time-consuming and expensive. Ecologists need to make decisions about where to do research, and if research questions focus on remote locations, there are likely a lot of constraints limiting options. For example, if research requires work in the Antarctic, odds are you'll be working at one of a few locations on the coast which, depending on the nature of the research, could bias our understanding of ecological or geological processes operating there.

The research needed for some questions can literally occur almost anywhere without much worry about how local context biases findings. That's not to say that local context will not play a role in ecological dynamics, and we should always be mindful of how local conditions influence the processes we are interested in. However, some questions are sufficiently general that we could envisage running an experiment in our backyard. However, there are research questions that necessitate careful consideration of the geographical location of research.

This is especially true for questions that pertain to the consequences of environmental change on ecological systems. The drivers of environmental change, whether it be pollution, nutrient deposition, changing temperature, extreme weather events or changes in precipitation patterns, all vary across the Earth and their impacts are similarly unequal. We shouldn't expect that a 2 degree C increase in average temperature to have the same effect in the tropics as, say, the arctic.

Location of Nutrient Network sites used in Borer et al. 2014
For some research endeavors, the solution to ensuring geographical coverage has been to replicate studies around the world. Take for example studying the effects of nutrient deposition in grasslands. There is a long history of ecologists adding nitrogen, phosphorus, and other nutrients to grasslands at specific locations in short duration experiments. These studies can tell us about how plant dominance might change, but it is difficult to extend this research to other locations facing different nutrient change patterns or that are inherently structured differently. The solution to this shortcoming is best represented by the globally distributed Nutrient Network experiment. The global experiment includes dozens of sites around the world that all replicate a basic set of experimental applications of plant nutrients, which has resulted in some very influential papers about global change effects on grasslands (e.g., Adler et al. 2011, Borer et al. 2014, Seabbloom et al. 2015).

This issue of the geography of research biasing our understanding of the impacts of global change is especially true for understanding the consequences of climate change in the Arctic. This was highlighted superbly by Metcalfe and colleagues recently (Metcalfe et al. 2018). They showed that most of the terrestrial ecology research in the Arctic has occurred in just a few places. And while this work has been extremely impactful and important for understanding the ecology of Arctic systems, they are not located in places undergoing the most drastic changes in climate. Therefore, because of the geographical location of research, we might not have a very good understanding of the impacts of climate change on Arctic ecosystems.

Where research is being done in the Arctic. Panel 'a' shows where publications are coming from and 'b' shows the impact in terms of number of citations (from Metcalfe et al. 2018).
This shows where photosynthesis has changed the most, which does not correspond well to where the research has been done (from Metcalfe et al. 2018).


This type of mismatch in climate change and research requires that ecologists purposefully establish research sites in areas that are rapidly changing. Metcalfe and colleagues suggest that the governments of Arctic nations establish focused research funding to support and promote research in these regions. This of course requires government dedication. The reality is it is cheaper and more efficient to do more research in existing, well supplied, field stations. Arctic scientists and professional organizations need to lobby environment or research government departments, and this research gap is an opportunity for Arctic governments to cooperate and share research costs.


References
Adler, P. B., E. W. Seabloom, E. T. Borer, H. Hillebrand, Y. Hautier, A. Hector, W. S. Harpole, L. R. O’Halloran, J. B. Grace, T. M. Anderson, J. D. Bakker, L. A. Biederman, C. S. Brown, Y. M. Buckley, L. B. Calabrese, C.-J. Chu, E. E. Cleland, S. L. Collins, K. L. Cottingham, M. J. Crawley, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, P. A. Fay, J. Firn, P. Frater, E. I. Gasarch, D. S. Gruner, N. Hagenah, J. Hille Ris Lambers, H. Humphries, V. L. Jin, A. D. Kay, K. P. Kirkman, J. A. Klein, J. M. H. Knops, K. J. La Pierre, J. G. Lambrinos, W. Li, A. S. MacDougall, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. W. Morgan, B. Mortensen, J. L. Orrock, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. Stevens, L. L. Sullivan, G. Wang, P. D. Wragg, J. P. Wright, and L. H. Yang. 2011. Productivity Is a Poor Predictor of Plant Species Richness. Science 333:1750-1753.

Borer, E. T., E. W. Seabloom, D. S. Gruner, W. S. Harpole, H. Hillebrand, E. M. Lind, P. B. Adler, J. Alberti, T. M. Anderson, J. D. Bakker, L. Biederman, D. Blumenthal, C. S. Brown, L. A. Brudvig, Y. M. Buckley, M. Cadotte, C. Chu, E. E. Cleland, M. J. Crawley, P. Daleo, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, G. Du, J. Firn, Y. Hautier, R. W. Heckman, A. Hector, J. HilleRisLambers, O. Iribarne, J. A. Klein, J. M. H. Knops, K. J. La Pierre, A. D. B. Leakey, W. Li, A. S. MacDougall, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, B. Mortensen, L. R. O'Halloran, J. L. Orrock, J. Pascual, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. Stevens, L. L. Sullivan, R. J. Williams, P. D. Wragg, J. P. Wright, and L. H. Yang. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517-520.

Metcalfe, D. B., T. D. Hermans, J. Ahlstrand, M. Becker, M. Berggren, R. G. Björk, M. P. Björkman, D. Blok, N. Chaudhary, C. J. N. e. Chisholm, and evolution. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution 2:1443.




Seabloom, E. W., E. T. Borer, Y. M. Buckley, E. E. Cleland, K. F. Davies, J. Firn, W. S. Harpole, Y. Hautier, E. M. Lind, A. S. MacDougall, J. L. Orrock, S. M. Prober, P. B. Adler, T. M. Anderson, J. D. Bakker, L. A. Biederman, D. M. Blumenthal, C. S. Brown, L. A. Brudvig, M. Cadotte, C. Chu, K. L. Cottingham, M. J. Crawley, E. I. Damschen, C. M. Dantonio, N. M. DeCrappeo, G. Du, P. A. Fay, P. Frater, D. S. Gruner, N. Hagenah, A. Hector, H. Hillebrand, K. S. Hofmockel, H. C. Humphries, V. L. Jin, A. Kay, K. P. Kirkman, J. A. Klein, J. M. H. Knops, K. J. La Pierre, L. Ladwig, J. G. Lambrinos, Q. Li, W. Li, R. Marushia, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. Morgan, B. Mortensen, L. R. O'Halloran, D. A. Pyke, A. C. Risch, M. Sankaran, M. Schuetz, A. Simonsen, M. D. Smith, C. J. Stevens, L. Sullivan, E. Wolkovich, P. D. Wragg, J. Wright, and L. Yang. 2015. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat Commun 6.

Wednesday, August 31, 2016

#EcoSummit2016: Conferences –the piñata of ideas.


One of the greatest benefits of attending conferences is that they represent learning opportunities. I don’t necessarily mean learning about new techniques or analyses, though you can undoubtedly find out about these at conferences, but rather conferences are opportunities to hear about new concepts, ideas and paradigms. In some ways conferences are like a piñata of ideas –they are chalk full of new ideas but you never know which you’ll pick up.

Ecosummit is not the typical conference I go to, it is much more diverse in topics of talks and disciplines of the attendees. This diversity –from policy makers, to social scientists, to ecologists, means that I am exposed to a plethora of new concepts. Here are a few nuggets that got me thinking:

  • Knowledge-values-rules decision making context. Policy decisions are made at the interface of scientific knowledge, human values (what is important to people –e.g., jobs), and rules (e.g., economic laws). This seems like a nice context to think about policy, though it is not clear about how we prioritize new knowledge or alter values.

 


  • Adaptation services. I work on ecosystem services (e.g., carbon storage, pollination support, water filtration, etc.), but I learned that ecosystems also provide adaptation services. These are aspects of ecosystems that will help human societies adapt to climate change (e.g., new products).


  • Trees and air pollution. The naive assumption most of us make about trees in urban areas are that they improve local air quality. However, I saw a couple of talks where this may not necessarily be the case. Some species in North American (red oak, sweet gum, etc.) release volatile organic compounds. Spruce plantations may not take up nitrogen oxides, and in fact might release it. Thus we need to be careful on how we sell the benefits of urban trees.


  • Transformative. This is a term I have certainly heard and used before, but in listening to a wide variety of talks, I realize it is used in different contexts to mean different things. I think it best to avoid this term.



  • a-disciplinary.  I heard a guy say in a talk that he was a-disciplinary and so was not bound to the dogmas and paradigms of any discipline (I already have a hard time wrapping my head around interdisciplinary, multidisciplinary, transdisciplinary, etc.). He then presented a new paradigm and a number of prescribed well-formulated tools used to move from idea, communication, to action. I think the irony was lost on him.

Monday, June 15, 2015

From the Archives: Conservation now and then

For the rest of the summer (until ESA!), we’re going to highlight some of the older topics and posts from the EEB & Flow. The blog has been around since December 2008, and so it has covered a lot of ground: 345+ posts with topics ranging from ecological history, to research advances, to work life balance, to the silly.

The interesting thing is that posts are like an archive of the various topics and directions ecological research has taken (or at least the research interests of the various post authors). And in many ways, papers from 2009 are frankly indistinguishable in topic and approach from today.

Take, for example, these posts from 2009 about conservation and climate change:

Salamanders and climate change – impending extinctions?

Fisheries and food webs: a whole system approach to cod recovery

The sushi of tomorrow… Jellyfish rolls?

Conserve now or wait for data?

The topics wouldn’t be out of place today. Risk assessments for specific species, fisheries and other applied questions, and consideration of the agony of conservation choices. 
(Not sure what this signifies - Maybe that 5 years isn't long in the grand scheme of research?)

Monday, November 24, 2014

The (changing) ecology of snow

We are well into winter in the Northern Hemisphere--Thanksgiving holidays are just around the corner in the US--and for much of the area, this is time defined by cold, dark, and snow. So it seemed appropriate to write a post about snow.

Much of the Northern Hemisphere, the Antarctic, and alpine areas are historically snow covered for more than two months of the year. In parts of the Arctic, snow cover may last 9 months of the year.
From Marchand 2014.
Though only a few degrees different from rain, snow alters an ecosystem through its unique physical properties. It is a physical force, an ecological pressure, and an opportunity: snow alters movement, creates and destroys habitat, and places immense pressures on individuals and species. The ecological implications of snow are immense and wide-ranging.


Snow has unique physical properties that make it particularly important, compared to equivalent amounts of precipitation. It stores energy and water. It insulates the soil underneath it, buffering it from cold temperatures and slowing its eventual re-warming. Snow limits light to the plants underneath it, reducing photosynthesis, and drastically cutting primary productivity during its stay. In addition to these physical properties, the sheer weight of snow has to be considered. Plants beneath a pile of snow risk compression, breakage, and deformation. 



A heavy blanket of snow, variable in its depth and consistency, changes the matrix and thus significantly alters movement: snow can ease dispersal, make it much more costly, or even prevent it altogether. Ease of movement in snow is in turn is tied to foraging and predation success. For example, small, lightweight vertebrates such as shrews become active underneath the snow, tunnelling in search of food and constructing nests under deep cover. For them, snow cover may aid winter survival. On top of the snow, some animals (hares, fox, etc.) enjoy ease of movement. If individuals are light enough to travel over the top of the snow, snow can reduce landscape complexity, burying brambles and filling hollows. However, for larger species, snow may come at a cost. Moose or reindeer for example, with their large masses and long, slender legs are at risk when snow depths are too high or a hard crust covers the snow. In these conditions, they may sink, slowing their escape from lighter predators.
Snow is difficult for all life, but plants in particular cannot escape. Places with long winter seasons and late snow melt filter out all but the most adapted vegetation. The plants common to Arctic and alpine areas share many life-history traits. Similar groups of species - mosses, lichens, low-growing shrubs, and grasses - are found in all of these areas. Such species have developed strategies for the conditions, such as seed germination cued by freeze/thaw cycles, small leaf areas to reduce water loss. There are also opportunities. Snow insulates – plants may benefit from burial under drifts, or from collecting snow in dead tissue above ground. Adaptations may permit early growth under thinning snow in the spring, by allowing photosynthesis in cold conditions and low light. 

The type, amount and depth of snow-cover may differentiate plant communities on a fine scale, between wind-exposed ridges where drought tolerance is necessary, and snow-accumulating depressions where tolerance of short growing seasons is required. Early naturalist literature recognized these snow-driven micro-differences, describing them as “schneetälchen” or little snow valleys. The Front Range of Colorado has been used for a number of studies of snow gradients on vegetation, and while many environmental factors vary along snow-melt gradients, the timing of snow melt alone greatly affects species presence and abundance.
Diagram of micro-habitats in alpine areas in Colorado,
where snow affects vegetation dynamics.
Distribution of 2 species in relation to snow depth. Both from Walker et al (2001)
Snow can be a significant source of water, sometimes the majority of water necessary for the year. It is also a sink for nutrients (N, S) from the atmosphere, the canopy, and the soil – leading it to sometimes be called ‘poor man’s fertilizer’. This isn’t always for the best – high concentrations of N and S in snowmelt can damage plant tissues, and snowdrifts can be reservoirs for airborne pollutants. In samples from the Athabasca River (Alberta, Canada), upstream of oil sands facilities, dissolved polycyclic aromatic compound levels averaged between 0.025-0.03 ug/L. However, measures from melting snow around the river had concentrations up to 4.8 ug/L, suggesting that spring snowmelt could have large environmental impacts. 
Snow algae (most common species: Chlamydomonas nivalis)
growth colours snow various shades of pink or red.

These nutrients in snow support unique microbial life. Snow algae, bacteria, yeasts and snow fungi arise. Snow algae are adapted to a life history spent wholly within melting snow – these algae find homes in glaciers, alpine peaks, and the dry valley lakes of Antarctica. These species have various adaptations to a snow-bound life, including enzymes resistant to freezing, and special pigments. These unique populations help replace some of the lost winter primary productivity. Small invertebrates graze on snow microbes, and the energy flows into local food webs.

So snow is unique, with wide-ranging implications for ecology and evolution where it occurs. But now snow is changing. Warming temperatures are having widespread and disastrous effects on snow ecosystems around the world. Arctic and alpine systems are among the most vulnerable regions to climate change, and the effects are already showing. Changes in the snow cover, depth and the timing of snowmelt are altering plant phenology and fitness, and restructuring local communities. The effects of changes in snow may be incredibly complex, may interact or be independent from changes in temperatures, and thus are difficult to predict. Some effects of changes in snow (and ice) are already obvious – for example, Glacier National Park in the US is likely to be glacier-less in 30 years. Polar bears, so reliant on their frozen habitat, face a very difficult future. But other effects are very subtle, and may take years to be fully recognized. For example, changes in snow conditions may decrease dispersal and gene flow between Canada lynx (Lynx Canadensis) populations which occur at different ends of a winter climate gradient. With declines in gene flow, the lynx may separate into two increasingly (ecologically?) distinct groups. Shrub encroachment in the low Arctic is a prime example of the complexity of changes in snow. Data shows that shrubs are increasing in abundance in the Arctic over the last 50 years. The snow-shrub hypothesis suggests that this is - indirectly - an outcome of increased snowfall in these regions (though note that warming temperatures are also causing this snow to melt earlier). Shrubs in the region accumulate larger amounts of snow in their branches, resulting in greater insulation and warmer soil temperatures. These warming temperatures encourage greater microbial activity, and perhaps enhance mineralization. The species most able to take advantage of these altered soils are, in fact, more shrubs. All of these examples are reminders that snow - and the organisms adapted to places full of snow - is changing.

References:
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H. and Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20: 3256–3269. doi: 10.1111/gcb.12568

Jones, H.G. and Pomeroy, J.W. The ecology of snow-covered systems: summary and relevance to Wolf Creek, Yukon. In Wolf Creek Research Basin: Hydrology, Ecology, Environment (1999), pp. 1-15.

Kelly, E.N. , et al. (2009) Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. PNAS, 106 (52) 22346-2235.

Larose, C., Aurélien Dommergue, and Timothy M. Vogel. (2013). The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity. Biology, 2(1), 317-330.

Marchand, P.J. (2014). Life in the Cold: An Introduction to Winter Ecology, fourth edition. University Press of New England.

Parmesan, C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, Vol. 37, pp. 637-669

Pomeroy, J. W., and Eric Brun. "Physical properties of snow." Snow ecology(2001): 45-126.

Row, J.R., et al. (2014). The subtle role of climate change on population genetic structure in Canada lynx. Global Change Biology, doi: 10.1111/gcb.12526.

Sturm, Matthew, et al. "Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications." Journal of Climate 14.3 (2001): 336-34
Walker, D. A., W. D. Billings, and J. G. De Molenaar. (2001) "Snow–vegetation interactions in tundra environments." Snow ecology: an interdisciplinary examination of snow-covered ecosystems  266-324.
http://www.nytimes.com/2014/11/23/us/climate-change-threatens-to-strip-the-identity-of-glacier-national-park.html

Thursday, December 19, 2013

More links for 2013: the 'new' conservation, the IPCC report in haiku, and more.

Conservation science has been at the receiving end of some harsh criticisms in the last couple of years, particularly from the current chief scientist of the Nature Conservancy, Peter Kareiva (e.g. 1).  They have suggested that conservation science needs to be redefined and refocused on human-centred benefits and values if it is to be successful. Some pushback in the form of TREE article from Dan Doak et al. suggests that reframing conservation in terms of its human benefits is not the best or only solution.

In a similar vein, another new paper in TREE asks what issues should the conservation community be addressing. A short-list of 15 issues suggests highly specific problems that should be addressed soon, including the exploitation of Antarctica, rapid geographic expansion of macroalgal cultivation for biofuels, and the loss of rhinos and elephants.

Even if the official IPCC report proves too long or dry for the average person to read before the end of the year, there is also a haiku version. The pretty watercolour illustrations don't make the report any more cheerful, unfortunately.

Finally, a new journal, "Elementa: Science of the Anthropocene" seems positioned to focus precisely on these kind of issues. According to their website: 

"Elementa is a new, open-access, scientific journal founded by BioOne, Dartmouth, Georgia Tech, the University of Colorado Boulder, the University of Michigan, and the University of Washington.
Elementa represents a comprehensive approach to the challenges presented by this era of accelerated human impact, embracing the concept that basic knowledge can foster sustainable solutions for society....Elementa publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. "


It will be interesting to see how it develops.





Thursday, December 5, 2013

What can the future of ecology learn from the past?

Ecology has been under pressure to mature and progress as a discipline several times in its short life, always in response to looming environmental threats and the perception that ecological knowledge could be of great value. This happened notably in the 1960s, when the call for ecology to be better applicable occurred in relation to the publication of Silent Spring and fears about nuclear power and the Manhattan Project. Voices in academia, government, and the public called for ecology to become a “Big Science”, and focus on bigger scales (the ecosystem) and questions. And yet, “[Silent Spring] brought ecology as a word and concept to the public…A study committee, prodded by the publication of the book, reported to the ESA that their science was not ready to take on the responsibility being given to it.”

Arguably ecology has grown a lot since then: there have been advances in statistical approaches, spatial and temporal considerations, mechanistic understanding of multiple processes, in the number and type of systems and species studied, and the applications being considered. But it is once again facing a call (one that frankly has been ongoing for a number of years) to quickly progress as a science. The Anthropocene has proven an age of extinctions, human-mediated environmental changes, and threats to species and ecosystems from warming, habitat loss and fragmentation, extinctions, and invasions abound. Never has (applied) ecology appeared more relevant as a discipline to the general public and government. This is reflected in the increasing inclusion of buzzwords like “climate change”, “restoration”, “ecosystem services”, “biodiversity hotspot”, or “invasion” as keys to successful self-justification. Also similar to the 1960s is the feeling that ecology is not ready or able to meet the demand. Worse, that the time ecology has to respond is more limited than ever.

This first point--that ecology isn’t ready--is repeated in Georgina Mace’s (the outgoing president of the British Ecological Society) must-read editorial in Nature. The globe is in trouble, from climate change, disease, overpopulation, loss of habitat and biodiversity and Mace argues that ecology is incapable in its current form of responding to the need. She suggests that unless ecology evolves, it will fail as a discipline. Despite the growth of ecology that followed the 1960s, it is still a 'small' discipline: collaborations are mostly intra-disciplinary, data has been privately controlled, and the tendency remains to specialize on a particular system or organism of interest. However, this 'small' approach provides very little insight into the big problems of today - particularly understanding and predicting how the effects of global change on ecosystems and multispecies assemblages. To Mace, the solution, the undeniable necessity, is for ecology to get bigger. In particular, collaborations need to be broader and larger, with data sharing and availability (“big data”) the default. Ecological models and experiments/observations should be scaled up so that we can understand ecosystem effects and identify general trends across species or systems. In this new 'big' ecology, “[g]oals would be shaped by scientists, policy-makers and users of the resulting science, rather than by recent publishing trends”. Making research more interdisciplinary and including end-product users would allow the most important questions to receive the attention they deserve.

The difficulty with the looming environmental crises and the pressure on ecology to grow, is that the important decisions to be made have to be made rapidly and perhaps without complete information. Often scientific progress is afforded the time for slow progression and self-correction. After all, change is costly and risky, it requires reinvesting effort and funding, and may or may not pay off, and so science (including ecology) is often conservative. For example, a conservative mind would note that Mace’s suggestions are not without uncertainty and risk. Big data, for example, is acknowledged to have its strengths and its weaknesses, it may or may not be the cure-all it is touted as. Regardless of the amounts of data, good questions need to be asked and data, no matter how high quality, may not be appropriate for some questions. Context is often so important in ecology that attempts to combine data for meta-analysis may be questionable. Long running arguments within ecology reflect the fear that making ecological research more useful for applications and interdisciplinary questions may come at the expense of basic research and theory. It seems then that ecology is in an even worse scenario than Mace suggests, since not only must ecology change in order to respond to need, but it also must predict with incomplete information which future path will be most effective.

So ecological science is at an important junction with choices to make about future directions, limits on the information with which to make those choices, little time to make them, and much pressure to make them correctly. Perhaps we can take some comfort from the fact that ecology has been here before, though. There are some lessons we can draw from ecology’s last identity crisis, both the successes and failures. The last round resulted in ecology gaining legitimacy as a science and being integrated into policy and governance (the EPA, environmental assessments, etc). It appears, particularly in some countries, that ecology is more difficult to sell to policy and government today, but at the very least ecology has established a toehold it can take advantage of. Ecology also tried to focus on bigger scales in the 1960s--the concept of the 'ecosystem' resulted from that time--but the criticism was that the new ideas about ecosystems and evolutionary ecology weren't well integrated into ecological applications, and so their effect wasn't as broad as it could have been. Concepts like ecosystem services and function today integrate ecosystem science into applied outputs, and the cautionary tale is the value of balancing theoretical and applied development. It also seems that ecology must first consider what its duty as a science is to society (Mace’s assumption being that we have a great duty to be of value), since that is the key determinate of what path we decide to take. Then, we can hopefully consider what have we done right in recent years, what have we done wrong, and then decide where to go from here.
Page from "Silent Spring", Rachel Carson.

Tuesday, November 26, 2013

Can you teach an old bird new (migratory) tricks?


Jennifer A. Gill, José A. Alves, William J. Sutherland, Graham F. Appleton, Peter M. Potts and Tómas G. Gunnarsson. 2013. “Why is timing of bird migration advancing when individuals are not?” Proc. B. Vol. 281, no. 1774.

Phenological responses have been used as one of the major indicators of climate change. The timing of flowering and fruiting, the return of migrant birds and insects from winter habitats are easily and often measured, and records going back decades or centuries sometimes exist. Most importantly, shifts in phenological indicators are some of the strongest connections between rising temperatures and biological and ecological responses (for example). There is plenty of evidence, for example, that some migrant bird species are returning to their breeding grounds earlier than ever. These migratory birds may be responding (via migration timing) to warming temperatures in several ways: there may be plasticity or flexibility in individual timing of migration which allows them to respond to changing temperature cues; or species may also show adaptation via changes in the frequency of individuals with different migratory timings (microevolution). In cases where migratory species are responding to climate change, distinguishing the mechanisms allowing them to do so is surprisingly hard. Early arrival of migratory bird species is often explained as being due to individual plasticity or flexibility in “choosing” the date of migration, but the majority of studies of this phenomenon include little or no information about individual behaviour, only changes in the mean date of arrival for the entire population.


For this reason, Gill et al. looked at individual, rather than average population, arrival dates for Icelandic black-tailed godwits in south Iceland. Icelandic black-tailed godwits (“godwits” for the sake of brevity) have shown significant advances in the last 20 years in the timing of their spring arrival to the shores of Iceland, and these advances appear to relate to increasing temperatures. The population has also been banded such that 1-2% can be individually identified and tracked throughout their migratory range. Although only adults (of unknown age) were banded at the start of the experiment in 1999, recently chicks have also been banded and released and so a wide range of demographic classes are included with the banded birds.
From Gill et al. 2013.

When Gill et al. looked at date of arrival across 14 years for each individual, their results were surprisingly clear and cohesive. As previously reported, the population mean date of arrival in South Iceland had advanced as much as 2 weeks. But, this advance is not reflected in individual timing of arrivals over that same period – if a bird tends to arrive on a given day, they will continue to arrive on approximately that day every year, independent of temperature conditions. Instead, the population trend appears to be driven entirely by birds born in recent years – young individuals (recently hatched) tend to have arrival dates much earlier than older individuals. At least for the godwits, population wide trends in migration dates are actually driven by only a subset of the individuals.

From Gill et al. (2013)
Often it is assumed that migratory birds are responding to warming temperatures on an individual level: individuals respond to changing cues, resulting in shifts in arrival date. This study suggests otherwise, and finds that the important mechanism is not individual plasticity or microevolution but rather related to demographic shifts in arrival time. As to why younger birds arrive earlier, it is not clear, but may relate to the observation that nest building and hatching dates are also advancing. It may be that natal conditions are important – the authors observed a variety of possibly inter-related changes such that hatching dates are advancing and chick sizes are increasing, and the suggestion that mortality rates of later arriving individuals may also be higher. "Environmentally induced advances in arrival dates of recruits could operate through: (i) carry-over effects of changing natal conditions, (ii) changing patterns of mortality of individuals with differing arrival times, or (iii) arrival times being initially determined by conditions in the year of recruitment and individuals repeating those timings thereafter."

These results make some predictions about which populations of migratory birds might have the most ability to respond to warming climate - most likely those with shorter migratory distances, shorter times to reproduction and shorter-lifespans (hence decreasing the lag-time required for the population to catch up to temperature). It may also have relevance for other non-bird species that also rely on careful timing between phenology and temperature. Correspondingly, it suggests limitations - if individual behaviour is so inflexible and constrained, our hopes that some species may respond to climate change with behavioural changes seem far to simplistic.

Monday, November 11, 2013

Exploring the intersection of conservation, ecology and human well-being

I've seen a number of articles recently that explore in different way the intersection of environment and ecology, conservation and human societies. In particular, Frontiers in Ecology and Evolution (the free ESA journal you are gifted as a member) has dedicated an entire issue to the question of climate impacts on humans and ecosystems, and the papers cover important topics relating to changing climate and its effects on biodiversity, ecosystem integrity and human societies. Economic predictions suggest costs from fires, drought, and rising sea levels: whether protecting ecosystems will preserve their function and so mediate these costs to humans and other organisms is explored in depth. Of course, scholarly papers can be impersonal, but another article about the struggles of Inuit in the north to adapt (or not) to changing ecosystems provides a smaller, more human look at climate, development, and cultural change. Another study predicts that for some cultures, climate change (and the resulting difficulties growing food, maintaining livelihoods, obtaining water and human health risks) may be too much for them to withstand.

Finally, a long-form story by Paul Voosen in The Chronicle of Higher Education asks "Who is conservation for?". While not a novel question, through interviews with Gretchen Daily and Michael Soule, Voosen does a thorough job of illuminating conservation biology in the context of real-world limitations and realities, historical precedents, ongoing tensions between new and old approaches to conservation, and economic development. In the end it asks what motivates conservation: do we conserve purely for the sake of biodiversity alone, for economic and functional benefits, for aesthetic reasons, for charismatic and at-risk species? As Voosen subtly hints in the article, if leading conservation biologists can't agree on the answer, will it ever be possible to be effective?


Slightly unrelated, but there is a great short film online about the life of Alfred Russel Wallace, the less celebrated co-discoverer of natural selection.

Sunday, April 28, 2013

Wine-ing about climate change


If you like wine, particularly Old World wines, a recent paper by Lee Hannah et al (PNAS 2013), suggests that climate change is going to put a dent in your drinking habits. One way of communicating the ecosystem and economic effects of global warming has been to relate them to products or factors that affect the general population directly (an approach which has had mixed success). Wine (from Vitis vinifera grapes) is a great focal product - the success and quality of winemaking depends on terroir, which results from local temperatures and soil moisture. Changes in climate suitability for grapes reflects changes in suitability for many other agricultural and native species. Also, the motivations behind examining the effects of climate change on vineyards is more than economic – viticulture particularly thrives in Mediterranean-type ecosystems (France, Spain, Italy, California, Chile, South Africa, and Australia), which are areas with particularly high biodiversity and endemism. Vineyards use large amounts of fresh water and house low numbers of native species – so changes in their location and size may have contrasting effects on native biodiversity, local economies, and water supplies.

Given these relationships, the authors suggest that modeling regional changes in viticulture suitability provides insight into changes in ecosystem services and diversity. They examined 17 possible climate  models (GCMs) to look at how appropriate conditions for viticulture might shift by 2050. More than 50% of the models predicted that traditional wine producing regions (Bordeaux and Rhône valley regions in France and Tuscany in Italy) will decline greatly. However, regions farther north in Europe may become increasingly suitable. 
From Hannah et al. 2013. PNAS. The percentage of GCMs supporting a prediction reflects the degree of certainty behind it. Click for larger image.
New World vineyards receive a less dire forecast – some areas in Australia, Chile, California, and South Africa will remain suitable for viticulture in the future and new areas to the north are likely to become available. According to model predictions, New Zealand may one day produce many times more wine than it does currently. Such predicted increases in wine production in novel regions may be accompanied by viticulture’s increased ecological footprint. Some shifts take advantage of high elevations with cooler temperatures, leading to the development of areas that are currently relatively preserved. Water usage demands are likely to be problematic in the future: for example, vineyards in Chile’s Maipo Valley rely on runoff mountain basins that are vulnerable to warming conditions.
From Hannah et al. 2013. PNAS. (CA, California floristic province; CFR, Cape floristic region (South Africa); CHL, Chile; MedAus, Mediterranean-climate Australia; MedEur, Mediterranean-climate Europe; NEur, Northern Europe; NMAus, non–Mediterranean-climate Australia; NZL, New Zealand; WNAm, western North America).

Wine is a useful focal point for another reason - it exemplifies the complicated nature of most predictions related to climate change: positive outcomes (increased wine production in NZ) may be linked to negative changes (threatened water supply and native diversity in these new areas). Wine producers in a number of regions have recognized the possible impacts of vineyards, and groups such as the Biodiversity and Wine Initiative in the Cape Floristic Region of South Africa, and the Wine, Climate Change and Biodiversity Program in Chile exist to reconcile conflicting interests. There may be ways to mediate the effects of changing climate on viticulture, including developing tolerant varieties, changing methodologies, or the separation of varieties from their traditional regions. 

Making predictions about how ecosystems will change in the future is still difficult. However, the climate envelope model approach is actually well suited for situations like human agriculture, where dispersal limitation, competition, and non-equilibrium conditions are unlikely to be an issue. Cultivated crops are limited mostly by human/economic motivation. The results across most models strongly support the idea that Mediterranean climate growing regions will experience decreased viticultural suitability. It is likely more difficult on a fine scale to determine which regions will become more suitable in the future (i.e. probably don’t invest in land in New Zealand, assuming you can start a vineyard there in 50 years) but the strong agreement between models suggests that you should enjoy some French or Italian wine sooner rather than later.