Usually, I view the release of a new journal with some skepticism. There are so many journals and it feels like academics are over-parsing fields, isolating researchers that should be communicating. However, sometimes a journal comes along and it is obvious that there is a need and the community responds to its arrival. Such is the case with the British Ecological Society's newest journal, Methods in Ecology and Evolution, started by Rob Freckleton. The idea that a journal would be dedicated to methods papers is a great idea. This era of ecology and evolution is one that is defined by rapid advances in experimental, technological and computational tools and keeping track of these advances is difficult. Having a single journal should make finding such papers easier, but more importantly provides a home for methodological and computational ecologists and evolutionary biologists, which will hopefully spur greater communication and interaction, fostering more rapid development of tools.
Two issues have been published and they have been populated by good, entertaining articles. I especially enjoyed the one by Bob O'Hara and Johan Kotze on why you shouldn't log transform count data. As a researcher, I've done this (instead of using a GLM with proper distribution) and as an editor, I've allowed this, but it has always felt wrong somehow, and this shows that it is.
The early success of the journal is not just the product of the good papers it has already published, but also because of the savvy use of electronic communication. They Tweet on Twitter, link fans through Facebook, blog about recent advances in methods from other journals and post podcast and videocast interviews with authors. These casts give readers access to authors' own explanations of how their methods can be used.
I am excited about this new journal and hope it has a great impact on the publication of methodological papers.
Tuesday, May 25, 2010
Tuesday, May 11, 2010
Picante's coming out party
This past decade has seen a rapid expansion of the use of evolutionary phylogenies in ecological studies. This expansion is largely due to the increased availability of phylogenies, but has resulted in new types of hypotheses and statistics aimed to test the phylogenetic patterns underpinning ecological communities. The main computational tool used has been phylocom, created by Cam Webb, David Ackerly and Steve Kembel, which has its own binaries to be installed on one’s computer. However, a new R package, picante has been created by Steve Kembel and colleagues which runs many of the same routines as in phylocom, but in the R framework, allowing one to tie these analyses in better with other, non-phylogenetic tests. Picante also has a number of features and tests not found in phylocom, including tests of phylobetadiversity and phylogenetic signal using Blomberg’s K.
Thanks Steve for all your hard work and for making these tests available to everyone.
Kembel, S., Cowan, P., Helmus, M., Cornwell, W., Morlon, H., Ackerly, D., Blomberg, S., & Webb, C. (2010). Picante: R tools for integrating phylogenies and ecology Bioinformatics DOI: 10.1093/bioinformatics/btq166
Thanks Steve for all your hard work and for making these tests available to everyone.
Kembel, S., Cowan, P., Helmus, M., Cornwell, W., Morlon, H., Ackerly, D., Blomberg, S., & Webb, C. (2010). Picante: R tools for integrating phylogenies and ecology Bioinformatics DOI: 10.1093/bioinformatics/btq166
Tuesday, April 27, 2010
Niche or Neutral? Why size matters.
Metacommunity dynamics (i.e. the effects of dispersal among connected communities) have become an increasingly common lens through which to explain community structure. For example, competition-colonization models explain the coexistence of superior and inferior competitors as the result of a trade-off in colonization and competitive ability. Species are either superior competitors, with high probabilities of establishing in patches, but low ability to move between patches, or superior colonizers, which have tend to lose in competitive interactions but can travel easily between patches. Under this framework, the ability of superior colonizers to reach and maintain populations in patches where their superior competitors are absent allows them to avoid extinction.
One problem with these types of models is that they rarely acknowledge the importance of ecological drift – that is, that chance events also affect species interactions. This despite the fact that we know that in “real life”, chance events likely play a major role in producing assemblages different than those we might predict based on theory. One of the strengths of the Hubbell’s neutral model is that it recognizes and embraces the importance of randomness.
A recent paper by Orrock and Watling (2010) examines how chance events can alter the predictions of the classic competition-colonization model. Orrock and Watling show that the size of communities in a metacommunity (which is assumed to correlate with the strength of ecological drift) determines whether community dynamics are niche-structured or neutral in nature. In large communities, predictions agree closely with those of the classic competition-colonization model, and niche-based interactions (i.e. competitive hierarchies) dominate. It’s in small communities that things get interesting: ecological drift becomes more important, so that differences in competitive ability between species are effectively neutralized. As a result, small communities begin to resemble neutral assemblages in which species abundances don’t relate to differences in competitive ability. An interesting consequence of this outcome is that species who are poor competitors but good colonizers have an additional refuge – simply by escaping to small communities, even if these communities contain superior competitors, they can persist in a metacommunity.
Beyond the theoretical implications of this model, the applied implications ar
e what really matter. Habitat destruction and fragmentation are an growing problem due to human activities. Habitat patches are often smaller, and of lower quality, decreasing the size of the community each patch can support. Even if these patches are still connected and functioning as a metacommunity, species which rely on their strong competitive ability for persistence will lose this advantage as assemblages become increasingly neutral. Under this model, community diversity declines even more as habitat is lost than in the traditional competition-colonization model, and superior competitors face even greater extinction risk than previously predicted.
Since in reality, metacommunities are likely to consist of patches of different sizes, rather than all large or all small patches, the predictions here remain to be extended to more realistic metacommunities. However, Orrock and Watling have produced a useful model for understanding how ecological drift can affect diversity in a metacommunity and alter the expectations of traditional competition-colonization models.
Orrock, J.L. and Watling, J.I. (2010) Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B.
One problem with these types of models is that they rarely acknowledge the importance of ecological drift – that is, that chance events also affect species interactions. This despite the fact that we know that in “real life”, chance events likely play a major role in producing assemblages different than those we might predict based on theory. One of the strengths of the Hubbell’s neutral model is that it recognizes and embraces the importance of randomness.
A recent paper by Orrock and Watling (2010) examines how chance events can alter the predictions of the classic competition-colonization model. Orrock and Watling show that the size of communities in a metacommunity (which is assumed to correlate with the strength of ecological drift) determines whether community dynamics are niche-structured or neutral in nature. In large communities, predictions agree closely with those of the classic competition-colonization model, and niche-based interactions (i.e. competitive hierarchies) dominate. It’s in small communities that things get interesting: ecological drift becomes more important, so that differences in competitive ability between species are effectively neutralized. As a result, small communities begin to resemble neutral assemblages in which species abundances don’t relate to differences in competitive ability. An interesting consequence of this outcome is that species who are poor competitors but good colonizers have an additional refuge – simply by escaping to small communities, even if these communities contain superior competitors, they can persist in a metacommunity.
Beyond the theoretical implications of this model, the applied implications ar

Since in reality, metacommunities are likely to consist of patches of different sizes, rather than all large or all small patches, the predictions here remain to be extended to more realistic metacommunities. However, Orrock and Watling have produced a useful model for understanding how ecological drift can affect diversity in a metacommunity and alter the expectations of traditional competition-colonization models.
Orrock, J.L. and Watling, J.I. (2010) Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B.
Wednesday, April 14, 2010
Teaching a quoll that cane toads are bad

Given that the spread of cane toads into the remaining quoll habitats is inevitable, research, led by Stephanie O'donnell in Richard Shine's lab at the University of Sydney and published in the Journal of Applied Ecology, is underway to train quoll's to avoid cane toads. These researchers feed a subset of captive quolls dead toads laced with thiabendazole, a chemical that induces nausea. They then fitted individuals with radio collars and released these toad-smart quolls as well as toad naive ones. Some toad-naive quolls died quickly, after attacking cane toads. Only 58% of male naive quolls survived, while 88% of toad-smart males survived. While females seemed less likely to attack toads, 84% of naive females survived and 94% of toad-smart females survived!
See the video of a toad-smart quoll deciding not to eat a cane toad, its pretty cool.
O’Donnell, S., Webb, J., & Shine, R. (2010). Conditioned taste aversion enhances the survival of an endangered predator imperilled by a toxic invader Journal of Applied Ecology DOI: 10.1111/j.1365-2664.2010.01802.x
Thursday, April 8, 2010
Plant rarity: environmental or dispersal limited?
In a recent paper by Birgit Seifert and Markus Fischer in Biological Conservation, they examine whether an endangered plant, Armeria maritima subsp. elongata, was limited because of a lack of habitats or if it was dispersal limited. They collected seeds from eight populations and experimentally added these seeds to their original populations and to uninhabited, but apparently appropriate sites. They found that seeds germinated equally well in inhabited and uninhabited sites and seedlings had similar survivorships. They found that variation in germination rates were likely caused by originating population size and that low genetic diversity and inbreeding reduce viability.
These results reinforce two things. First is that conserving species may only require specific activities, such as collect and distributing seeds. Here ideas like assisted migration seem like valuable conservation strategies. Secondly, we really need to be doing these simple experiments to better understand why species are rare. If we fail to understand the causes of rarity, we may be wasting valuable resources when try to protect rare species.
Seifert, B., & Fischer, M. (2010). Experimental establishment of a declining dry-grassland flagship species in relation to seed origin and target environment Biological Conservation DOI: 10.1016/j.biocon.2010.02.028
Monday, March 22, 2010
Predicting endangered carnivores: the role of environment, space and phylogeny

Although these variables do not represent causal mechanisms of extinction risk -rather they are correlative, they do provide conservation biologists with a rapid assessment tool to evaluate extinction risk. These tools should be particularly important in cases were population data are lacking and immediate pragmatic decisions are required.
Safi, K., & Pettorelli, N. (2010). Phylogenetic, spatial and environmental components of extinction risk in carnivores Global Ecology and Biogeography DOI: 10.1111/j.1466-8238.2010.00523.x
Monday, March 15, 2010
Low impact blogging
Not anymore. No, we did not go nuclear. Rather, the ingenious people behind Mach's grun have started a great program. For writing this post about them, their 'make it green' campaign and the Arbor Day Foundation will plant a tree in Plumas National Forest in northern California. In 2007, a devastating forest fire destoyed 65,000 ha. By choosing to blog green, at least one more tree is planted. I will feel better knowing that there will be tree exhaling oxygen for our blog.
Tuesday, March 9, 2010
Ecology and industry: bridging the gap between economics and the environment
This is the premise of a paper by Paul Armsworth and 15 other authors on the ecological research needs of business, appearing in the Journal of Applied Ecology (for an interview with Paul, by yours truly, please go to the podcast, and I should point out that I am an Editor with this journal). The authors include academics, NGOs and industrial representatives, and they've come together to analyze patterns of cooperation and to discuss ways forward.
They reviewed papers appearing in the top applied ecology journals and grant proposals to the National Environmental Research Council (NERC) in the UK to measure the degree and type of interaction between ecologists and different industries. Ten to 15 percent of publications in applied journals showed some business involvement -mostly from the traditional biological resource industries (farming, fishing and forestry). Further, 35% of NERC proposals included some business engagement, but only 1% had direct business interaction.
Further, the authors reported on a workshop where ecologists and business representatives discussed a number of topics. This included how to minimize negative biodiversity impacts and for industries, such as mining, to consider ecosystem function, and how to develop new ecologically-based economic opportunities, such as insurers managing environmental risk. While there were some challenges identified (such as differing time frames of business needs versus scientific research), the authors note the positive atmosphere and the spirit of collaboration.
The research in this paper should be emulated elsewhere. A better understanding of business needs and desires can only inform and offer opportunities for applied ecological research. Top-down governmental regulation can only take conservation and ecosystem management so far and those who are directly involved in altering and managing ecosystems must articulate goals and desires in order to successfully apply ecological principles to biodiversity protection in an economic landscape.
Armsworth, P., Armsworth, A., Compton, N., Cottle, P., Davies, I., Emmett, B., Fandrich, V., Foote, M., Gaston, K., Gardiner, P., Hess, T., Hopkins, J., Horsley, N., Leaver, N., Maynard, T., & Shannon, D. (2010). The ecological research needs of business Journal of Applied Ecology, 47 (2), 235-243 DOI: 10.1111/j.1365-2664.2010.01792.x
Friday, March 5, 2010
Competitive coexistence, it's all about individuals.
In order for two species to coexist, intraspecific competition must be stronger than interspecific -so sayeth classic models of competition. While people have consistently looked for niche differences that reduce interspecific competition, no one has really assessed the strength of intraspecific competition. Until now that is. In a recent paper in Science, Jim Clark examines intra- vs interspecific interactions from data following individual tree performances, across multiple species, for up to 18 years. This data set included annual growth and reproduction, resulting in 226,000 observations across 22,000 trees in 33 species!
His question was actually quite simple -what is the strength of intraspecific interactions relative to interspecific ones? There are two alternatives. First, that intraspecific competition is higher, meaning that among species differences only need to be small for coexistence to occur; or secondly, that intraspecific competition is lower, requiring greater species niche differences for coexistence. To answer this he looked at correlations in growth and fecundity between individuals either belonging to the same or different species, living in proximity to one another. He took a strong positive correlation as evidence for strong competition and a negative or weak correlation as evidence for resource or temporal niche partitioning. What he found was that individuals within species were much more likely to show correlated responses to fluctuating environments, than individuals among species.
This paper represents persuasive evidence that within-species competition is generally extremely high, meaning that to satisfy the inequality leading to coexistence: intra > inter, subtle niche differences can be sufficient. These findings should spur a new era of theoretical predictions and empirical tests as our collective journey to understanding coexistence continues.
Clark, J. (2010). Individuals and the Variation Needed for High Species Diversity in Forest Trees Science, 327 (5969), 1129-1132 DOI: 10.1126/science.1183506

Tuesday, March 2, 2010
Check out the carnival of evolution and be sure to vote for your favorite blogs
Be sure to check out this month's Carnival of Evolution (number 21) posted at Mauka to Makai. The Carnival is a monthly digest of recent evolutionary musings from around the blogosphere. This month's edition includes a number of interesting posts, as well as one of our posts on what evolution offers conservation.
Also, Research Blogging has announced finalists for various blogs awards. If you are eligible, please vote, there are a lot of great blogs vying for these awards. Also, The EEB and Flow is among the finalists for best biology blog. And to the people we nominated us, thanks again for nominating our blog.
Also, Research Blogging has announced finalists for various blogs awards. If you are eligible, please vote, there are a lot of great blogs vying for these awards. Also, The EEB and Flow is among the finalists for best biology blog. And to the people we nominated us, thanks again for nominating our blog.
Subscribe to:
Posts (Atom)