In a large-scale study published this week in Proceedings of the National Academy of Sciences, Hongcheng Zeng and colleagues show that hurricane damage can diminish a forest’s ability to absorb carbon dioxide from the atmosphere. Their results suggest that an increase in hurricane frequency due to global warming may further amplify global warming.
The annual amount of carbon dioxide a forest absorbs from the atmosphere is determined by the ratio of tree growth to tree mortality each year. When hurricanes cause extensive tree mortality, not only are there fewer trees in the forest to absorb greenhouse gases, but these tree die-offs also emit carbon dioxide, thus potentially warming the climate.
Using field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts of hurricanes, the researchers established that an average of 97 million trees have been affected each year for the past 150 years over the continental United States, resulting in a 53-million ton annual biomass loss and an average carbon release of 25 million tons per year. Over the period of 1980–1990, released CO2 potentially offset carbon absorption by forest trees by 9–18% over the entire United States. Impacts on forests were primarily located in Gulf Coast areas such as southern Texas, Louisiana, and Florida, but significant impacts also occurred in eastern North Carolina.
These results have important implications for evaluating positive feedback loops between global warming and environmental change.
Zenga, H., J. Q. Chambers, R. I. Negrón-Juárez, G. C. Hurtt, D. B. Baker, and M. D. Powell. (2009). Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000. PNAS, 106 (19), 7888-7892. DOI:10.1073/pnas.0808914106
Tuesday, May 12, 2009
Wednesday, May 6, 2009
Biological carbon pump potentially slows down with sea surface warming

Biological activity in the world open ocean’s surface is characterized by autotrophic and by heterotrophic processes. Phytoplankton organisms take up dissolved CO2 (dissolved inorganic carbon, DIC) and together with other inorganic nutrients and light they produce biomass (particulate organic carbon, POC) and dissolved organic carbon (DOC). By these processes marine phytoplankton is responsible for approximately half of the worlds primary production. These two carbon compounds (POC and DOC) either sink down to the deep ocean (which is basically the biological carbon pump) or they are consumed by other trophic levels. One important part of the planktonic food web is the microbial community which consists of bacteria (smaller than 3 µm), auto- and heterotrophic flagellates and other protists (larger than three µm). This community takes up both POC and DOC and by respiration recycles these carbon compounds back into DIC. Thus in terms of carbon flux the microbial community potentially competes with the biological carbon pump.
In a mesocosm experiment with natural marine plankton Julia Wohlers and her colleagues manipulated future ocean surface warming and measured the carbon flux during the plankton bloom peak. Whereas in this experiment phytoplankton biomass production (POC of autotrophs) was not affected by warming the authors found that respiration by the microbial community, in particular by organism larger than 3 µm, significantly increased. This increase in respiration led to a significant decrease in net DIC reduction in the whole planktonic foodweb. The results are a potential sign for future declining carbon sequestration by biological processes in the world oceans.
Julia Wohlers, Anja Engel, Eckart Zöllner, Petra Breithaupt, Klaus Jürgens, Hans-Georg Hoppe, Ulrich Sommer and Ulf Riebesell (2009). Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences. DOI:10.1073/pnas.0812743106
Friday, May 1, 2009
Enrichment and diversity loss: a mechanism tested
To paraphrase Thomas Henry Huxley: How stupid of us not to have thought of that!
As reveled in the most recent issue of Science, Hautier et al. performed an exceedingly simple experiment; they added light to the understory of plant communities with or without nitrogen additions. They made two compelling observations. First, when communities were enriched without elevated light, they lost about 3 of the 6 initial species compared to the control, while light addition in the enriched communities maintained the 6 member community (as did a light only treatment). The second result was that the light plus nitrogen treatment obtained much higher biomass than either the nitrogen or light only treatments, and in fact the light only treatment did not significantly increase productivity, meaning that the communities are not normally light-limited. Further, they failed to detect any elevated belowground competition for other resources.
These results reveal that nutrient enrichment causes diversity loss because increased plant size increases light competition and plants that grow taller with elevated nitrogen are better light competitors. An old problem solved with the right experiment.
Hautier, Y., Niklaus, P., & Hector, A. (2009). Competition for Light Causes Plant Biodiversity Loss After Eutrophication Science, 324 (5927), 636-638 DOI: 10.1126/science.1169640
Wednesday, April 22, 2009
People value rare species; at least from their computers

Cleverly, they created a French website where visitors could select to view either a slideshow of common or rare species (and the links randomly changed positions on the site). The trick was that a download status bar appears and freezes near the end, and so Angula and Courchamp were able to measure how many visitors selected the rare species show and how long they waited until they gave up. Visitors were much more likely to select the rare species and to wait longer to see them.
I think that this study is extremely neat for two reasons. First it offers a novel way to quantify valuation, and second, it shows how the internet can be used to assess conservation issues in an efficient low-cost way.
Now will they please just show us the pictures of the cute, endangered species!
Angulo, E., & Courchamp, F. (2009). Rare Species Are Valued Big Time PLoS ONE, 4 (4) DOI: 10.1371/journal.pone.0005215
Friday, April 17, 2009
A mechanism on why communities of exotic species are less diverse than communities of native species
Wilsey, B., Teaschner, T., Daneshgar, P., Isbell, F., & Polley, H. (2009). Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities Ecology Letters, 12 (5), 432-442 DOI: 10.1111/j.1461-0248.2009.01298.x
Sunday, April 5, 2009
Climate change increases West Nile Virus outbreaks in the U.S.
According to a study recently published in Environmental Health Perspectives, climate change has increased the prevalence of West Nile Virus infections in the United States. In one of the largest surveys of West Nile Virus cases to date, the authors find a correlation between increasing temperature and rainfall and outbreaks of the mosquito-borne disease between 2001 and 2005. Because warming weather patterns and increasing rainfall are both projected to accelerate with global warming, the authors predict that climate change will exacerbate West Nile Virus outbreaks in the future.
In the study, Dr. Jonathan Soverow and his collaborators matched more than 16,000 confirmed West Nile cases in 17 states to local meteorological data.
Warmer temperatures had the greatest effect on outbreaks. By extending the length of the mosquito breeding season and decreasing the amount of time it takes mosquitoes to reach their adult, biting stage, warmer weather means more biting mosquitoes longer. Moreover, increasing temperature speeds multiplication of the virus within insects, so mosquitoes in warmer climates have a greater viral load, making them more likely to infect humans.
Increased precipitation was also correlated with higher rates of West Nile Virus infection. A single, heavy rainstorm resulting in two or more inches of rain increased infection rates by 33%, while smaller storms had less of an effect on infection rates. Heavier rainfall events can increase disease prevalence by creating pools of water in which mosquitoes can breed and by increasing humidity, which stimulates mosquitoes to bite and breed. Total weekly rainfall had a smaller but significant effect on West Nile Virus infections, with an increase of 0.75 inch of rain/week increasing the number of infections by about 5%.
Warmer, wetter weather patterns might expand the niches of the mosquito species that carry West Nile Virus. In California, for instance, several mosquito species carrying the West Nile Virus have extended their ranges into higher elevations and coastal areas as temperatures have warmed. Changing weather patterns might also affect certain species of birds that are reservoirs for West Nile Virus. For example, droughts can push bird populations into urban areas, making West Nile Virus outbreaks in human populations more likely.
Soverow, J.E., G.A. Wellenius, D.N. Fisman, and M.A. Mittleman. 2009. Infectious disease in a warming world: How weather influenced West Nile Virus in the United States (2001-2005). Environmental Health Perspectives. Online 16 March 2009 DOI: 10.1289/ehp.0800487
In the study, Dr. Jonathan Soverow and his collaborators matched more than 16,000 confirmed West Nile cases in 17 states to local meteorological data.
Warmer temperatures had the greatest effect on outbreaks. By extending the length of the mosquito breeding season and decreasing the amount of time it takes mosquitoes to reach their adult, biting stage, warmer weather means more biting mosquitoes longer. Moreover, increasing temperature speeds multiplication of the virus within insects, so mosquitoes in warmer climates have a greater viral load, making them more likely to infect humans.
Increased precipitation was also correlated with higher rates of West Nile Virus infection. A single, heavy rainstorm resulting in two or more inches of rain increased infection rates by 33%, while smaller storms had less of an effect on infection rates. Heavier rainfall events can increase disease prevalence by creating pools of water in which mosquitoes can breed and by increasing humidity, which stimulates mosquitoes to bite and breed. Total weekly rainfall had a smaller but significant effect on West Nile Virus infections, with an increase of 0.75 inch of rain/week increasing the number of infections by about 5%.
Warmer, wetter weather patterns might expand the niches of the mosquito species that carry West Nile Virus. In California, for instance, several mosquito species carrying the West Nile Virus have extended their ranges into higher elevations and coastal areas as temperatures have warmed. Changing weather patterns might also affect certain species of birds that are reservoirs for West Nile Virus. For example, droughts can push bird populations into urban areas, making West Nile Virus outbreaks in human populations more likely.
Soverow, J.E., G.A. Wellenius, D.N. Fisman, and M.A. Mittleman. 2009. Infectious disease in a warming world: How weather influenced West Nile Virus in the United States (2001-2005). Environmental Health Perspectives. Online 16 March 2009 DOI: 10.1289/ehp.0800487
Thursday, April 2, 2009
Letting out your little Monet
I realized, sometime not too long ago, that I really enjoy adding aesthetically pleasing details to my figures in scientific publications. All scientists look at hundreds of boring, monochromatic scatterplots, bar charts and ordination plots every month, so why not make them a little more appealing? If done right, the benefits are that people are more likely to remember your key figures and perhaps results, you can convey more information by incorporating imagery, and you may actually get a little joy out of preparing those figures. The downfalls are, if done poorly, they are distracting and publishing color figures is always costly for print editions.
Here are some examples of artistically augmented publication figures -but if you have other good examples, let me know and I'll add them:
This is from a recent Ecology Letters from Crutsinger, Cadotte (me) and Sanders (2009), 12: 285-292, trying to explain how we partitioned arthropod diversity into spatial components.

This one is from Ellwood et al. (2009) in Ecology Letters 12: 277-284, which shows co-occurrence null histograms for patterns of arthropods at various hight locations on trees.
This one is from Crutsinger et al (2006) Science 313: 966-968 that displays patterns at differing trophic levels by juxtaposing photos of specific tropic members.

Finally, the use of drawings and images to illustrate phylogenetic trends in phenotypic evolution is particularly useful. Above are two examples, on the left is from Carlson et al. 2009 Evolution 63: 767-778, showing patterns of darter evolution; and on the right is from Oakley and Cunningham 2002 PNAS 99: 1426-1430, showing evolutionary pathways of compound eyes.

And here's one from Dolph Schluter (2000) American Naturalist 156: S4-S16, using drawings to illustrate how fish morphology corresponds to an abstracted index on the bottom axis.
Here are two from Joe Baily while working in Tom Whitham's Cottonwood Ecology Group that are effective ways to remind the reader what the treatments or dependent variables were (elk herbivory, leaf shape/genotype) and what the response variables were (bird predation, wood consumption by beavers). The left hand figure is from Baily & Whitham (2003) Oikos 101: 127-134 and the one on the right is from Baily et al. (2004) Ecology 85: 603-608.
Here is a great one posted by Ethan on Jabberwocky Ecology on Hurlbert's Unicorn!
Here are some examples of artistically augmented publication figures -but if you have other good examples, let me know and I'll add them:

This is from a recent Ecology Letters from Crutsinger, Cadotte (me) and Sanders (2009), 12: 285-292, trying to explain how we partitioned arthropod diversity into spatial components.

This one is from Ellwood et al. (2009) in Ecology Letters 12: 277-284, which shows co-occurrence null histograms for patterns of arthropods at various hight locations on trees.



Finally, the use of drawings and images to illustrate phylogenetic trends in phenotypic evolution is particularly useful. Above are two examples, on the left is from Carlson et al. 2009 Evolution 63: 767-778, showing patterns of darter evolution; and on the right is from Oakley and Cunningham 2002 PNAS 99: 1426-1430, showing evolutionary pathways of compound eyes.

And here's one from Dolph Schluter (2000) American Naturalist 156: S4-S16, using drawings to illustrate how fish morphology corresponds to an abstracted index on the bottom axis.

Here is a great one posted by Ethan on Jabberwocky Ecology on Hurlbert's Unicorn!
Friday, March 27, 2009
The evolutionary meaning of autumn colors

1) Sunscreen: Pigments provide photoprotection against photooxidation during the recovery of nutrients.
2) Leaf warming: Colors absorb light and warm the leaves during cooling temperatures.
3) Coevolution: Tells overwintering insects that the tree is not suitable (poisonous or low nutrition) for hibernation.
4) Camouflage: Many insects lack red photoreceptor, making leaves difficult to see -thus protecting trees from overwintering pests.
5) Unpalatability: Pigments (e.g., red -anthocyanins) are unpalatable.
So, we may quibble about particular hypotheses, but the point for me is that there may be deeper explanations as to why certain species produce the vivid colors they do. At a minimum, Archetti provides ammunition to experimental botanists and evolutionary biologists for testing new hypotheses. I'll never look at an autumn forest the same again.
Archetti, M. (2009). Classification of hypotheses on the evolution of autumn colours Oikos, 118 (3), 328-333 DOI: 10.1111/j.1600-0706.2008.17164.x
Archetti, M. (2008). Phylogenetic analysis reveals a scattered distribution of autumn colours Annals of Botany, 103 (5), 703-713 DOI: 10.1093/aob/mcn259
Archetti, M., Döring, T., Hagen, S., Hughes, N., Leather, S., Lee, D., Lev-Yadun, S., Manetas, Y., Ougham, H., & Schaberg, P. (2009). Unravelling the evolution of autumn colours: an interdisciplinary approach Trends in Ecology & Evolution, 24 (3), 166-173 DOI: 10.1016/j.tree.2008.10.006
Monday, March 23, 2009
Conserve now or wait for the data?
The philosophical divide between protect now-learn later versus the need for detailed information to maximize resources appears bridgeable. It seems that by just accumulating some rough data may go a long way towards making those important conservation decisions. Of course, the irony is that this study needed 20 years of data to adequately assess this.
Grantham, H., Wilson, K., Moilanen, A., Rebelo, T., & Possingham, H. (2009). Delaying conservation actions for improved knowledge: how long should we wait? Ecology Letters, 12 (4), 293-301 DOI: 10.1111/j.1461-0248.2009.01287.x
Tuesday, March 17, 2009
Being a clover isn’t always so lucky
I always think of Trifolium species as being particularly common and widely distributed, but there are some that are threatened and potentially tell us about the threats faced by imperiled plant populations. In fact, while a number of North American Trifolium species have successfully invaded North America, but T. montanum is not, according to the USDA Plants Database. These results reveal that these negative effects affect plants at different stages of their life cycle (growth to maturity vs. recuitment) and that log-term persistence of these populations requires management activities that ameliorate both of these effects.
SCHLEUNING, M., NIGGEMANN, M., BECKER, U., & MATTHIES, D. (2009). Negative effects of habitat degradation and fragmentation on the declining grassland plant Trifolium montanum Basic and Applied Ecology, 10 (1), 61-69 DOI: 10.1016/j.baae.2007.12.002
Subscribe to:
Posts (Atom)